2021-06-22 18:31:16 +00:00
|
|
|
import numpy as np
|
2021-06-23 13:56:35 +00:00
|
|
|
from pandas.core.frame import DataFrame
|
2021-06-24 07:48:30 +00:00
|
|
|
from scipy.fft import fft, fftfreq
|
2021-06-24 10:02:49 +00:00
|
|
|
import pywt
|
2021-06-28 08:57:08 +00:00
|
|
|
import sys
|
2021-06-28 18:32:00 +00:00
|
|
|
import Handle_emg_data as Handler
|
2021-06-22 18:31:16 +00:00
|
|
|
|
|
|
|
|
2021-06-22 13:32:51 +00:00
|
|
|
|
2021-06-24 11:30:32 +00:00
|
|
|
# Normalizes a ndarray of a signal to the scale of int16(32767)
|
2021-06-23 13:56:35 +00:00
|
|
|
def normalize_wave(y_values):
|
2021-06-24 07:40:30 +00:00
|
|
|
y = np.int16((y_values / y_values.max()) * 32767)
|
|
|
|
return y
|
2021-06-23 13:56:35 +00:00
|
|
|
|
2021-06-24 11:30:32 +00:00
|
|
|
# Takes the FFT of a DataFrame object
|
2021-06-24 10:02:49 +00:00
|
|
|
def fft_of_df(df:DataFrame):
|
2021-06-24 13:45:33 +00:00
|
|
|
y_values = get_xory_from_df('y', df)
|
2021-06-24 10:02:49 +00:00
|
|
|
N = y_values.size
|
2021-06-24 07:48:30 +00:00
|
|
|
norm = normalize_wave(y_values)
|
2021-06-28 17:24:17 +00:00
|
|
|
N_trans = fftfreq(N, 1 / Handler.get_samplerate(df))
|
2021-06-24 07:48:30 +00:00
|
|
|
y_f = fft(norm)
|
2021-06-25 07:37:49 +00:00
|
|
|
return N_trans, y_f
|
2021-06-24 10:02:49 +00:00
|
|
|
|
2021-06-24 11:30:32 +00:00
|
|
|
# Removes noise with db4 wavelet function
|
2021-06-28 07:59:01 +00:00
|
|
|
def wavelet_db4(df:DataFrame):
|
2021-06-24 13:45:33 +00:00
|
|
|
y_values = get_xory_from_df('y', df)
|
2021-06-24 11:30:32 +00:00
|
|
|
#y_values = normalize_wave(y_values)
|
2021-06-24 10:02:49 +00:00
|
|
|
wavelet = pywt.Wavelet('db4')
|
2021-06-24 11:30:32 +00:00
|
|
|
cA, cD = pywt.dwt(y_values, wavelet)
|
2021-06-24 12:24:58 +00:00
|
|
|
N_trans = np.array(range(int(np.floor((y_values.size + wavelet.dec_len - 1) / 2))))
|
|
|
|
return N_trans, cA, cD
|
2021-06-24 11:30:32 +00:00
|
|
|
|
2021-06-28 07:59:01 +00:00
|
|
|
# soft filtering of wavelet trans with the a 1/2 std filter
|
|
|
|
def soft_threshold_filter(cA, cD):
|
|
|
|
cA_filt = pywt.threshold(cA, np.std(cA)/2)
|
|
|
|
cD_filt = pywt.threshold(cD, np.std(cD)/2)
|
2021-06-24 12:35:37 +00:00
|
|
|
return cA_filt, cD_filt
|
|
|
|
|
2021-06-24 13:45:33 +00:00
|
|
|
# Inverse dwt for brining denoise signal back to the time domainfi
|
|
|
|
def inverse_wavelet(df, cA_filt, cD_filt):
|
2021-06-24 12:35:37 +00:00
|
|
|
wavelet = pywt.Wavelet('db4')
|
|
|
|
y_new_values = pywt.idwt(cA_filt, cD_filt, wavelet)
|
2021-06-24 13:45:33 +00:00
|
|
|
new_len = len(y_new_values)
|
|
|
|
old_len = len(get_xory_from_df('y', df))
|
|
|
|
if new_len > old_len:
|
|
|
|
while new_len > old_len:
|
|
|
|
y_new_values = y_new_values[:-1]
|
|
|
|
new_len = len(y_new_values)
|
|
|
|
old_len = len(get_xory_from_df('y', df))
|
2021-06-24 12:35:37 +00:00
|
|
|
return y_new_values
|
2021-06-24 11:30:32 +00:00
|
|
|
|
2021-06-28 18:32:00 +00:00
|
|
|
# NOT FINISHED
|
2021-06-28 07:59:01 +00:00
|
|
|
def cepstrum(df:DataFrame):
|
2021-06-25 11:41:57 +00:00
|
|
|
N = get_xory_from_df('x', df)
|
2021-06-28 07:59:01 +00:00
|
|
|
y = get_xory_from_df('y', df)
|
|
|
|
return None
|
2021-06-25 11:41:57 +00:00
|
|
|
|