fix: fix the inverse wavelet func
This commit is contained in:
parent
04498a79e6
commit
dfc1b4173a
@ -99,11 +99,14 @@ def load_user_emg_data():
|
||||
|
||||
return csv_handler.data_container_dict
|
||||
|
||||
|
||||
# Takes in a df and outputs np arrays for x and y values
|
||||
def prep_df(df:DataFrame):
|
||||
min, duration = Handler.get_min_max_timestamp(df)
|
||||
y = df.iloc[:,1].to_numpy()
|
||||
return y, duration
|
||||
def get_xory_from_df(x_or_y, df:DataFrame):
|
||||
swither = {
|
||||
'x': df.iloc[:,0].to_numpy(),
|
||||
'y': df.iloc[:,1].to_numpy()
|
||||
}
|
||||
return swither.get(x_or_y, 0)
|
||||
|
||||
# Normalizes a ndarray of a signal to the scale of int16(32767)
|
||||
def normalize_wave(y_values):
|
||||
@ -112,7 +115,7 @@ def normalize_wave(y_values):
|
||||
|
||||
# Takes the FFT of a DataFrame object
|
||||
def fft_of_df(df:DataFrame):
|
||||
y_values, duration = prep_df(df)
|
||||
y_values = get_xory_from_df('y', df)
|
||||
N = y_values.size
|
||||
norm = normalize_wave(y_values)
|
||||
N_trans = fftfreq(N, 1 / SAMPLE_RATE)
|
||||
@ -121,7 +124,7 @@ def fft_of_df(df:DataFrame):
|
||||
|
||||
# Removes noise with db4 wavelet function
|
||||
def wavelet_db4_denoising(df:DataFrame):
|
||||
y_values, duration = prep_df(df)
|
||||
y_values = get_xory_from_df('y', df)
|
||||
#y_values = normalize_wave(y_values)
|
||||
wavelet = pywt.Wavelet('db4')
|
||||
cA, cD = pywt.dwt(y_values, wavelet)
|
||||
@ -140,10 +143,17 @@ def soft_threshold_filter(cA, cD):
|
||||
cD_filt = cD
|
||||
return cA_filt, cD_filt
|
||||
|
||||
# Inverse dwt for brining denoise signal back to the time domain
|
||||
def inverse_wavelet(cA_filt, cD_filt):
|
||||
# Inverse dwt for brining denoise signal back to the time domainfi
|
||||
def inverse_wavelet(df, cA_filt, cD_filt):
|
||||
wavelet = pywt.Wavelet('db4')
|
||||
y_new_values = pywt.idwt(cA_filt, cD_filt, wavelet)
|
||||
new_len = len(y_new_values)
|
||||
old_len = len(get_xory_from_df('y', df))
|
||||
if new_len > old_len:
|
||||
while new_len > old_len:
|
||||
y_new_values = y_new_values[:-1]
|
||||
new_len = len(y_new_values)
|
||||
old_len = len(get_xory_from_df('y', df))
|
||||
return y_new_values
|
||||
|
||||
# Plots DataFrame objects
|
||||
@ -161,11 +171,16 @@ def plot_arrays(N, y):
|
||||
handler = Handler.CSV_handler()
|
||||
file = "/Exp20201205_2myo_hardTypePP/HaluskaMarek_20201207_1810/myoLeftEmg.csv"
|
||||
df = handler.get_time_emg_table(file, 1)
|
||||
N = np.array(range(int(df.iloc[:,1].size + 1)))
|
||||
plot_df(df)
|
||||
N = get_xory_from_df('x', df)
|
||||
#plot_df(df)
|
||||
print(len(N))
|
||||
print(len(get_xory_from_df('y', df)))
|
||||
x, cA, cD = wavelet_db4_denoising(df)
|
||||
plot_arrays(x, cA)
|
||||
#plot_arrays(x, cA)
|
||||
print(len(cA))
|
||||
cA_filt, cD_filt = soft_threshold_filter(cA, cD)
|
||||
plot_arrays(x, cA_filt)
|
||||
y_new_values = inverse_wavelet(cA, cD)
|
||||
#plot_arrays(x, cA_filt)
|
||||
print(len(cA_filt))
|
||||
y_new_values = inverse_wavelet(df, cA, cD)
|
||||
print(len(y_new_values))
|
||||
plot_arrays(N, y_new_values)
|
Loading…
Reference in New Issue
Block a user