diff --git a/Signal_prep.py b/Signal_prep.py index da730fe..0b79d50 100644 --- a/Signal_prep.py +++ b/Signal_prep.py @@ -99,11 +99,14 @@ def load_user_emg_data(): return csv_handler.data_container_dict + # Takes in a df and outputs np arrays for x and y values -def prep_df(df:DataFrame): - min, duration = Handler.get_min_max_timestamp(df) - y = df.iloc[:,1].to_numpy() - return y, duration +def get_xory_from_df(x_or_y, df:DataFrame): + swither = { + 'x': df.iloc[:,0].to_numpy(), + 'y': df.iloc[:,1].to_numpy() + } + return swither.get(x_or_y, 0) # Normalizes a ndarray of a signal to the scale of int16(32767) def normalize_wave(y_values): @@ -112,7 +115,7 @@ def normalize_wave(y_values): # Takes the FFT of a DataFrame object def fft_of_df(df:DataFrame): - y_values, duration = prep_df(df) + y_values = get_xory_from_df('y', df) N = y_values.size norm = normalize_wave(y_values) N_trans = fftfreq(N, 1 / SAMPLE_RATE) @@ -121,7 +124,7 @@ def fft_of_df(df:DataFrame): # Removes noise with db4 wavelet function def wavelet_db4_denoising(df:DataFrame): - y_values, duration = prep_df(df) + y_values = get_xory_from_df('y', df) #y_values = normalize_wave(y_values) wavelet = pywt.Wavelet('db4') cA, cD = pywt.dwt(y_values, wavelet) @@ -140,10 +143,17 @@ def soft_threshold_filter(cA, cD): cD_filt = cD return cA_filt, cD_filt -# Inverse dwt for brining denoise signal back to the time domain -def inverse_wavelet(cA_filt, cD_filt): +# Inverse dwt for brining denoise signal back to the time domainfi +def inverse_wavelet(df, cA_filt, cD_filt): wavelet = pywt.Wavelet('db4') y_new_values = pywt.idwt(cA_filt, cD_filt, wavelet) + new_len = len(y_new_values) + old_len = len(get_xory_from_df('y', df)) + if new_len > old_len: + while new_len > old_len: + y_new_values = y_new_values[:-1] + new_len = len(y_new_values) + old_len = len(get_xory_from_df('y', df)) return y_new_values # Plots DataFrame objects @@ -161,11 +171,16 @@ def plot_arrays(N, y): handler = Handler.CSV_handler() file = "/Exp20201205_2myo_hardTypePP/HaluskaMarek_20201207_1810/myoLeftEmg.csv" df = handler.get_time_emg_table(file, 1) -N = np.array(range(int(df.iloc[:,1].size + 1))) -plot_df(df) +N = get_xory_from_df('x', df) +#plot_df(df) +print(len(N)) +print(len(get_xory_from_df('y', df))) x, cA, cD = wavelet_db4_denoising(df) -plot_arrays(x, cA) +#plot_arrays(x, cA) +print(len(cA)) cA_filt, cD_filt = soft_threshold_filter(cA, cD) -plot_arrays(x, cA_filt) -y_new_values = inverse_wavelet(cA, cD) +#plot_arrays(x, cA_filt) +print(len(cA_filt)) +y_new_values = inverse_wavelet(df, cA, cD) +print(len(y_new_values)) plot_arrays(N, y_new_values) \ No newline at end of file