feat: clone and import python_speech_features
and add a mfcc func
This commit is contained in:
parent
e7087b04c7
commit
452a591837
2
.gitignore
vendored
2
.gitignore
vendored
@ -1,4 +1,4 @@
|
||||
Exp20201205_2myo_hard**
|
||||
Exp20201205_2myo_soft**
|
||||
Documents
|
||||
python_speech_features
|
||||
python_speech_features**
|
@ -1,7 +1,6 @@
|
||||
import pandas as pd
|
||||
from pathlib import Path
|
||||
import numpy as np
|
||||
|
||||
from pandas.core.frame import DataFrame
|
||||
|
||||
class Data_container:
|
||||
|
@ -1,5 +1,7 @@
|
||||
from Handle_emg_data import *
|
||||
from Signal_prep import *
|
||||
import matplotlib.pyplot as plt
|
||||
from matplotlib import cm
|
||||
|
||||
# PLOT FUNCTIONS:
|
||||
|
||||
@ -9,7 +11,7 @@ def plot_df(df:DataFrame):
|
||||
plt.show()
|
||||
|
||||
# Plots ndarrays after transformations
|
||||
def plot_arrays(N, N_name, y, y_name):
|
||||
def plot_array(N, y):
|
||||
plt.plot(N, np.abs(y))
|
||||
plt.show()
|
||||
|
||||
@ -25,6 +27,12 @@ def plot_compare_two_df(df_old, old_name, df_new, new_name):
|
||||
axis[1].set_title(new_name)
|
||||
plt.show()
|
||||
|
||||
def plot_mfcc(mfcc_data):
|
||||
fig, ax = plt.subplots()
|
||||
mfcc_data= np.swapaxes(mfcc_data, 0 ,1)
|
||||
cax = ax.imshow(mfcc_data, interpolation='nearest', cmap=cm.coolwarm, origin='lower')
|
||||
ax.set_title('MFCC')
|
||||
plt.show()
|
||||
|
||||
# DATA FUNCTIONS:
|
||||
|
||||
@ -59,6 +67,17 @@ def denoice_dataset(handler:Handler.CSV_handler, subject_nr, which_arm, round, e
|
||||
return df_new
|
||||
|
||||
|
||||
# CASE FUNTIONS
|
||||
|
||||
def compare_with_wavelet(data_frame):
|
||||
N_trans, cA, cD = wavelet_db4(data_frame)
|
||||
data_frame_freq = make_df_from_xandy(N_trans, cA, 1)
|
||||
|
||||
cA_filt, cD_filt = soft_threshold_filter(cA, cD)
|
||||
data_frame_freq_filt = make_df_from_xandy(N_trans, cD_filt, 1)
|
||||
|
||||
plot_compare_two_df(data_frame_freq, 'Original data', data_frame_freq_filt, 'Analyzed data')
|
||||
|
||||
|
||||
# MAIN:
|
||||
|
||||
@ -68,13 +87,9 @@ def main():
|
||||
load_data(csv_handler, 'hard')
|
||||
data_frame = get_data(csv_handler, 1, 'left', 1, 1)
|
||||
|
||||
N_trans, cA, cD = wavelet_db4(data_frame)
|
||||
data_frame_freq = make_df_from_xandy(N_trans, cA, 1)
|
||||
|
||||
cA_filt, cD_filt = soft_threshold_filter(cA, cD)
|
||||
data_frame_freq_filt = make_df_from_xandy(N_trans, cD_filt, 1)
|
||||
|
||||
plot_compare_two_df(data_frame_freq, 'Original data', data_frame_freq_filt, 'Analyzed data')
|
||||
N, y_mfcc = mfcc(data_frame)
|
||||
plt.plot(y_mfcc)
|
||||
plt.show()
|
||||
|
||||
return None
|
||||
|
||||
|
@ -1,12 +1,11 @@
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
import pandas
|
||||
from pandas.core.frame import DataFrame
|
||||
from scipy.fft import fft, fftfreq
|
||||
import pywt
|
||||
import pyhton_speech_features as psf
|
||||
#from scipy.signal import wavelets
|
||||
#import pyyawt
|
||||
#from pyhton_speech_features.base import mfcc
|
||||
import sys
|
||||
sys.path.insert(0, '/Users/Markus/Prosjekter git/Slovakia 2021/python_speech_features/python_speech_features')
|
||||
from python_speech_features.python_speech_features import *
|
||||
|
||||
import Handle_emg_data as Handler
|
||||
|
||||
@ -78,9 +77,9 @@ def cepstrum(df:DataFrame):
|
||||
|
||||
return None
|
||||
|
||||
'''
|
||||
def mfcc(df:DataFrame):
|
||||
N = get_xory_from_df('x', df)
|
||||
y = get_xory_from_df('y', df)
|
||||
spf.mfcc(y, )
|
||||
'''
|
||||
return N, base.mfcc(y, SAMPLE_RATE)
|
||||
|
||||
|
||||
|
Binary file not shown.
Binary file not shown.
Loading…
Reference in New Issue
Block a user