feat: clone and import python_speech_features
and add a mfcc func
This commit is contained in:
		
							parent
							
								
									e7087b04c7
								
							
						
					
					
						commit
						452a591837
					
				
							
								
								
									
										2
									
								
								.gitignore
									
									
									
									
										vendored
									
									
								
							
							
						
						
									
										2
									
								
								.gitignore
									
									
									
									
										vendored
									
									
								
							@ -1,4 +1,4 @@
 | 
			
		||||
Exp20201205_2myo_hard**
 | 
			
		||||
Exp20201205_2myo_soft**
 | 
			
		||||
Documents
 | 
			
		||||
python_speech_features
 | 
			
		||||
python_speech_features**
 | 
			
		||||
@ -1,7 +1,6 @@
 | 
			
		||||
import pandas as pd
 | 
			
		||||
from pathlib import Path
 | 
			
		||||
import numpy as np
 | 
			
		||||
 | 
			
		||||
from pandas.core.frame import DataFrame
 | 
			
		||||
 | 
			
		||||
class Data_container:
 | 
			
		||||
 | 
			
		||||
@ -1,5 +1,7 @@
 | 
			
		||||
from Handle_emg_data import *
 | 
			
		||||
from Signal_prep import *
 | 
			
		||||
import matplotlib.pyplot as plt
 | 
			
		||||
from matplotlib import cm
 | 
			
		||||
 | 
			
		||||
# PLOT FUNCTIONS:
 | 
			
		||||
 | 
			
		||||
@ -9,7 +11,7 @@ def plot_df(df:DataFrame):
 | 
			
		||||
    plt.show()
 | 
			
		||||
 | 
			
		||||
# Plots ndarrays after transformations 
 | 
			
		||||
def plot_arrays(N, N_name, y, y_name):
 | 
			
		||||
def plot_array(N, y):
 | 
			
		||||
    plt.plot(N, np.abs(y))
 | 
			
		||||
    plt.show()
 | 
			
		||||
 | 
			
		||||
@ -25,6 +27,12 @@ def plot_compare_two_df(df_old, old_name, df_new, new_name):
 | 
			
		||||
    axis[1].set_title(new_name)
 | 
			
		||||
    plt.show()
 | 
			
		||||
 | 
			
		||||
def plot_mfcc(mfcc_data):
 | 
			
		||||
    fig, ax = plt.subplots()
 | 
			
		||||
    mfcc_data= np.swapaxes(mfcc_data, 0 ,1)
 | 
			
		||||
    cax = ax.imshow(mfcc_data, interpolation='nearest', cmap=cm.coolwarm, origin='lower')
 | 
			
		||||
    ax.set_title('MFCC')
 | 
			
		||||
    plt.show() 
 | 
			
		||||
 | 
			
		||||
# DATA FUNCTIONS:
 | 
			
		||||
 | 
			
		||||
@ -59,6 +67,17 @@ def denoice_dataset(handler:Handler.CSV_handler, subject_nr, which_arm, round, e
 | 
			
		||||
    return df_new
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
# CASE FUNTIONS 
 | 
			
		||||
 | 
			
		||||
def compare_with_wavelet(data_frame):
 | 
			
		||||
    N_trans, cA, cD = wavelet_db4(data_frame)
 | 
			
		||||
    data_frame_freq = make_df_from_xandy(N_trans, cA, 1)
 | 
			
		||||
 | 
			
		||||
    cA_filt, cD_filt = soft_threshold_filter(cA, cD)
 | 
			
		||||
    data_frame_freq_filt = make_df_from_xandy(N_trans, cD_filt, 1)
 | 
			
		||||
 | 
			
		||||
    plot_compare_two_df(data_frame_freq, 'Original data', data_frame_freq_filt, 'Analyzed data')
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
# MAIN:
 | 
			
		||||
 | 
			
		||||
@ -68,13 +87,9 @@ def main():
 | 
			
		||||
    load_data(csv_handler, 'hard')
 | 
			
		||||
    data_frame = get_data(csv_handler, 1, 'left', 1, 1)
 | 
			
		||||
 | 
			
		||||
    N_trans, cA, cD = wavelet_db4(data_frame)
 | 
			
		||||
    data_frame_freq = make_df_from_xandy(N_trans, cA, 1)
 | 
			
		||||
 | 
			
		||||
    cA_filt, cD_filt = soft_threshold_filter(cA, cD)
 | 
			
		||||
    data_frame_freq_filt = make_df_from_xandy(N_trans, cD_filt, 1)
 | 
			
		||||
 | 
			
		||||
    plot_compare_two_df(data_frame_freq, 'Original data', data_frame_freq_filt, 'Analyzed data')
 | 
			
		||||
    N, y_mfcc = mfcc(data_frame)
 | 
			
		||||
    plt.plot(y_mfcc)
 | 
			
		||||
    plt.show()
 | 
			
		||||
 | 
			
		||||
    return None
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@ -1,12 +1,11 @@
 | 
			
		||||
import numpy as np 
 | 
			
		||||
import matplotlib.pyplot as plt
 | 
			
		||||
import pandas
 | 
			
		||||
from pandas.core.frame import DataFrame
 | 
			
		||||
from scipy.fft import fft, fftfreq
 | 
			
		||||
import pywt
 | 
			
		||||
import pyhton_speech_features as psf
 | 
			
		||||
#from scipy.signal import wavelets
 | 
			
		||||
#import pyyawt
 | 
			
		||||
#from pyhton_speech_features.base import mfcc
 | 
			
		||||
import sys
 | 
			
		||||
sys.path.insert(0, '/Users/Markus/Prosjekter git/Slovakia 2021/python_speech_features/python_speech_features')
 | 
			
		||||
from python_speech_features.python_speech_features import *
 | 
			
		||||
 | 
			
		||||
import Handle_emg_data as Handler
 | 
			
		||||
 | 
			
		||||
@ -78,9 +77,9 @@ def cepstrum(df:DataFrame):
 | 
			
		||||
    
 | 
			
		||||
    return None
 | 
			
		||||
 | 
			
		||||
'''
 | 
			
		||||
def mfcc(df:DataFrame):
 | 
			
		||||
    N = get_xory_from_df('x', df)
 | 
			
		||||
    y = get_xory_from_df('y', df)
 | 
			
		||||
    spf.mfcc(y, )
 | 
			
		||||
'''
 | 
			
		||||
    return N, base.mfcc(y, SAMPLE_RATE)
 | 
			
		||||
    
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
										
											Binary file not shown.
										
									
								
							
										
											Binary file not shown.
										
									
								
							
		Loading…
	
		Reference in New Issue
	
	Block a user