EMG_Biometrics_2021/Signal_prep.py

85 lines
2.6 KiB
Python
Raw Normal View History

import numpy as np
2021-06-23 13:56:35 +00:00
from pandas.core.frame import DataFrame
from scipy.fft import fft, fftfreq
2021-06-24 10:02:49 +00:00
import pywt
#from pyhton_speech_features.base import mfcc
import sys
sys.path.insert(0, '/Users/Markus/Prosjekter git/Slovakia 2021/python_speech_features/python_speech_features')
from python_speech_features.python_speech_features import *
2021-06-23 13:56:35 +00:00
import Handle_emg_data as Handler
2021-06-23 11:26:17 +00:00
# Takes in a df and outputs np arrays for x and y values
2021-06-24 13:45:33 +00:00
def get_xory_from_df(x_or_y, df:DataFrame):
swither = {
'x': df.iloc[:,0].to_numpy(),
'y': df.iloc[:,1].to_numpy()
}
return swither.get(x_or_y, 0)
# Normalizes a ndarray of a signal to the scale of int16(32767)
2021-06-23 13:56:35 +00:00
def normalize_wave(y_values):
2021-06-24 07:40:30 +00:00
y = np.int16((y_values / y_values.max()) * 32767)
return y
2021-06-23 13:56:35 +00:00
# Takes the FFT of a DataFrame object
2021-06-24 10:02:49 +00:00
def fft_of_df(df:DataFrame):
2021-06-24 13:45:33 +00:00
y_values = get_xory_from_df('y', df)
2021-06-24 10:02:49 +00:00
N = y_values.size
norm = normalize_wave(y_values)
N_trans = fftfreq(N, 1 / Handler.get_samplerate(df))
y_f = fft(norm)
return N_trans, y_f
2021-06-24 10:02:49 +00:00
# Removes noise with db4 wavelet function
2021-06-28 07:59:01 +00:00
def wavelet_db4(df:DataFrame):
2021-06-24 13:45:33 +00:00
y_values = get_xory_from_df('y', df)
#y_values = normalize_wave(y_values)
2021-06-24 10:02:49 +00:00
wavelet = pywt.Wavelet('db4')
cA, cD = pywt.dwt(y_values, wavelet)
N_trans = np.array(range(int(np.floor((y_values.size + wavelet.dec_len - 1) / 2))))
return N_trans, cA, cD
# Filters signal accordning to Stein's Unbiased Risk Estimate(SURE)
2021-06-25 09:47:12 +00:00
'''
def sure_threshold_filter(cA, cD):
2021-06-24 12:35:37 +00:00
cA_filt = pyyawt.theselect(cA, 'rigrsure')
cD_filt = cD
return cA_filt, cD_filt
2021-06-25 09:47:12 +00:00
'''
2021-06-28 07:59:01 +00:00
# soft filtering of wavelet trans with the a 1/2 std filter
def soft_threshold_filter(cA, cD):
cA_filt = pywt.threshold(cA, np.std(cA)/2)
cD_filt = pywt.threshold(cD, np.std(cD)/2)
2021-06-24 12:35:37 +00:00
return cA_filt, cD_filt
2021-06-24 13:45:33 +00:00
# Inverse dwt for brining denoise signal back to the time domainfi
def inverse_wavelet(df, cA_filt, cD_filt):
2021-06-24 12:35:37 +00:00
wavelet = pywt.Wavelet('db4')
y_new_values = pywt.idwt(cA_filt, cD_filt, wavelet)
2021-06-24 13:45:33 +00:00
new_len = len(y_new_values)
old_len = len(get_xory_from_df('y', df))
if new_len > old_len:
while new_len > old_len:
y_new_values = y_new_values[:-1]
new_len = len(y_new_values)
old_len = len(get_xory_from_df('y', df))
2021-06-24 12:35:37 +00:00
return y_new_values
2021-06-28 07:59:01 +00:00
def cepstrum(df:DataFrame):
N = get_xory_from_df('x', df)
2021-06-28 07:59:01 +00:00
y = get_xory_from_df('y', df)
return None
2021-06-28 12:44:00 +00:00
def mfcc(df:DataFrame, samplesize, windowsize, stepsize):
2021-06-28 07:59:01 +00:00
N = get_xory_from_df('x', df)
y = get_xory_from_df('y', df)
2021-06-28 12:44:00 +00:00
return N, base.mfcc(y, samplesize, windowsize, stepsize)