feat: add db4 wavelet func
This commit is contained in:
parent
2afad7f87c
commit
fecf1aaae2
@ -44,7 +44,7 @@ def get_emg_str(emg_nr):
|
||||
|
||||
def get_min_max_timestamp(df:DataFrame):
|
||||
min = int(np.floor(df['timestamp'].min()))
|
||||
max = int(np.ceil(df['timestamp'].max()))
|
||||
max = df['timestamp'].max()
|
||||
return min, max
|
||||
|
||||
|
||||
|
@ -2,6 +2,8 @@ import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
from pandas.core.frame import DataFrame
|
||||
from scipy.fft import fft, fftfreq
|
||||
import pywt
|
||||
from scipy.signal import wavelets
|
||||
|
||||
import Handle_emg_data as Handler
|
||||
|
||||
@ -97,31 +99,38 @@ def load_user_emg_data():
|
||||
return csv_handler.data_container_dict
|
||||
|
||||
# Takes in a df and outputs np arrays for x and y values
|
||||
def prep_df_for_trans(df:DataFrame):
|
||||
sample_rate = SAMPLE_RATE
|
||||
def prep_df(df:DataFrame):
|
||||
min, duration = Handler.get_min_max_timestamp(df)
|
||||
x = np.linspace(0, duration, SAMPLE_RATE * duration, endpoint=False)
|
||||
y = df.iloc[:,1].to_numpy()
|
||||
return x, y, duration
|
||||
return y, duration
|
||||
|
||||
def normalize_wave(y_values):
|
||||
y = np.int16((y_values / y_values.max()) * 32767)
|
||||
return y
|
||||
|
||||
|
||||
def transformed_df(df:DataFrame):
|
||||
x_values, y_values, duration = prep_df_for_trans(df)
|
||||
N = SAMPLE_RATE * duration
|
||||
def fft_of_df(df:DataFrame):
|
||||
y_values, duration = prep_df(df)
|
||||
N = y_values.size
|
||||
norm = normalize_wave(y_values)
|
||||
x_f = fftfreq(N, 1 / SAMPLE_RATE)
|
||||
y_f = fft(norm)
|
||||
return x_f, y_f
|
||||
return x_f, y_f, duration
|
||||
|
||||
def denoise_signal_pywt(df:DataFrame):
|
||||
y_values, duration = prep_df(df)
|
||||
norm = normalize_wave(y_values)
|
||||
wavelet = pywt.Wavelet('db4')
|
||||
cA, cD = pywt.dwt(norm, wavelet)
|
||||
x = np.array(range(int(np.floor((y_values.size + wavelet.dec_len - 1) / 2))))
|
||||
print(x)
|
||||
return x, cA
|
||||
|
||||
def plot_df(df:DataFrame):
|
||||
lines = df.plot.line(x='timestamp')
|
||||
plt.show()
|
||||
|
||||
def plot_fft(x_f, y_f):
|
||||
def plot_transformed(x_f, y_f):
|
||||
plt.plot(x_f, np.abs(y_f))
|
||||
plt.show()
|
||||
|
||||
@ -130,7 +139,7 @@ handler = Handler.CSV_handler()
|
||||
file = "/Exp20201205_2myo_hardTypePP/HaluskaMarek_20201207_1810/myoLeftEmg.csv"
|
||||
df = handler.get_time_emg_table(file, 1)
|
||||
#plot_df(df)
|
||||
trans_df = DataFrame(transformed_df(df))
|
||||
x_f, y_f = denoise_signal_pywt(df)
|
||||
#print(trans_df.info)
|
||||
plot_fft(trans_df)
|
||||
plot_transformed(x_f, y_f)
|
||||
#'''
|
Binary file not shown.
Loading…
Reference in New Issue
Block a user