chore: add information about sessions
into the mfcc json file
This commit is contained in:
parent
8faa352af9
commit
4ba390a268
@ -528,12 +528,12 @@ class NN_handler:
|
|||||||
4: [],
|
4: [],
|
||||||
5: []
|
5: []
|
||||||
}
|
}
|
||||||
# Should med 4 sessions * (~150, 208) of mfcc samples per person. One DataFrame per subject
|
# Should med 4 sessions * (~150, 208) of mfcc samples per person. One [DataFrame, session_length_list] per subject
|
||||||
self.mfcc_samples_per_subject = {1: None,
|
self.mfcc_samples_per_subject = {1: [],
|
||||||
2: None,
|
2: [],
|
||||||
3: None,
|
3: [],
|
||||||
4: None,
|
4: [],
|
||||||
5: None
|
5: []
|
||||||
}
|
}
|
||||||
|
|
||||||
# GET method for reg_samples_dict
|
# GET method for reg_samples_dict
|
||||||
@ -627,8 +627,8 @@ class NN_handler:
|
|||||||
|
|
||||||
# Takes in all EMG session Dataframe and creates DataFrame of MFCC samples
|
# Takes in all EMG session Dataframe and creates DataFrame of MFCC samples
|
||||||
# Input: DataFrame(shape[1]=16, EMG data)
|
# Input: DataFrame(shape[1]=16, EMG data)
|
||||||
# Output: DataFrame(merged MFCC data, shape: (n, 13*16))
|
# Output: DataFrame(merged MFCC data, shape: (n, 13*16)), length of session datapoints
|
||||||
def make_mfcc_df_from_session_df(self, session_df) -> DataFrame:
|
def make_mfcc_df_from_session_df(self, session_df):
|
||||||
session_df.rename(columns={0:'timestamp'}, inplace=True)
|
session_df.rename(columns={0:'timestamp'}, inplace=True)
|
||||||
samplerate = get_samplerate(session_df)
|
samplerate = get_samplerate(session_df)
|
||||||
attach_func = lambda list_1, list_2: list_1.extend(list_2)
|
attach_func = lambda list_1, list_2: list_1.extend(list_2)
|
||||||
@ -645,16 +645,19 @@ class NN_handler:
|
|||||||
mfcc_i = DataFrame(mfcc_i).dropna()
|
mfcc_i = DataFrame(mfcc_i).dropna()
|
||||||
mfcc_i['combined'] = mfcc_i.values.tolist()
|
mfcc_i['combined'] = mfcc_i.values.tolist()
|
||||||
df = result_df.combine(mfcc_i['combined'], attach_func)
|
df = result_df.combine(mfcc_i['combined'], attach_func)
|
||||||
|
|
||||||
|
session_length = (len(result_df.index)) # Add the length of session data points
|
||||||
|
|
||||||
return result_df
|
return result_df, session_length
|
||||||
|
|
||||||
# Merges MFCC data from all sessions and stores the sample data in
|
# Merges MFCC data from all sessions and stores the sample data in
|
||||||
# the NN_handler's mfcc_samples_per_subject dict
|
# the NN_handler's mfcc_samples_per_subject dict
|
||||||
# Input: None(NN_handler)
|
# Input: None(NN_handler)
|
||||||
# Output: None -> stores in NN_handler
|
# Output: None -> stores in NN_handler [samples, session_length_list] for each subject
|
||||||
def store_mfcc_samples(self) -> None:
|
def store_mfcc_samples(self) -> None:
|
||||||
for subject_nr in range(5):
|
for subject_nr in range(5):
|
||||||
subj_samples = []
|
subj_samples = []
|
||||||
|
session_length_list = []
|
||||||
for session_nr in range(4):
|
for session_nr in range(4):
|
||||||
list_of_emg = self.get_emg_list(subject_nr+1, session_nr+1)
|
list_of_emg = self.get_emg_list(subject_nr+1, session_nr+1)
|
||||||
tot_session_df = self.make_subj_sample(list_of_emg)
|
tot_session_df = self.make_subj_sample(list_of_emg)
|
||||||
@ -663,11 +666,12 @@ class NN_handler:
|
|||||||
if tot_session_df.isnull().values.any():
|
if tot_session_df.isnull().values.any():
|
||||||
print('NaN in: subject', subject_nr+1, 'session:', session_nr+1, 'where? HERE')
|
print('NaN in: subject', subject_nr+1, 'session:', session_nr+1, 'where? HERE')
|
||||||
|
|
||||||
mfcc_df_i = self.make_mfcc_df_from_session_df(tot_session_df)
|
mfcc_df_i, session_length = self.make_mfcc_df_from_session_df(tot_session_df)
|
||||||
subj_samples.append(mfcc_df_i)
|
subj_samples.append(mfcc_df_i)
|
||||||
|
session_length_list.append(session_length)
|
||||||
|
|
||||||
result_df = pd.concat(subj_samples, axis=0, ignore_index=True)
|
result_df = pd.concat(subj_samples, axis=0, ignore_index=True)
|
||||||
self.mfcc_samples_per_subject[subject_nr+1] = result_df
|
self.mfcc_samples_per_subject[subject_nr+1] = [result_df, session_length_list]
|
||||||
|
|
||||||
|
|
||||||
# Makes MFCC data from reg_samples_per_subject and stores it in a json file
|
# Makes MFCC data from reg_samples_per_subject and stores it in a json file
|
||||||
@ -735,7 +739,9 @@ class NN_handler:
|
|||||||
data = {
|
data = {
|
||||||
"mapping": [],
|
"mapping": [],
|
||||||
"labels": [],
|
"labels": [],
|
||||||
"mfcc": []
|
"mfcc": [],
|
||||||
|
|
||||||
|
"session_lengths": []
|
||||||
}
|
}
|
||||||
|
|
||||||
raw_data_dict = self.get_mfcc_samples_dict()
|
raw_data_dict = self.get_mfcc_samples_dict()
|
||||||
@ -746,13 +752,15 @@ class NN_handler:
|
|||||||
# save subject label in the mapping
|
# save subject label in the mapping
|
||||||
subject_label = 'Subject ' + str(key)
|
subject_label = 'Subject ' + str(key)
|
||||||
print("\nProcessing: {}".format(subject_label))
|
print("\nProcessing: {}".format(subject_label))
|
||||||
data["mapping"].append(subject_label)
|
data["mapping"].append(subject_label) # Subject label
|
||||||
|
data["session_lengths"].append(value[1]) # List[subject][session_length_list]
|
||||||
|
|
||||||
# process all samples per subject
|
# process all samples per subject
|
||||||
for i, sample in enumerate(value):
|
for i, sample in enumerate(value[0]):
|
||||||
|
|
||||||
data["labels"].append(key-1)
|
data["labels"].append(key-1) # Subject nr
|
||||||
data["mfcc"].append(sample)
|
data["mfcc"].append(sample[0]) # MFCC sample on same index
|
||||||
|
|
||||||
print("sample:{} is done".format(i+1))
|
print("sample:{} is done".format(i+1))
|
||||||
#print(np.array(mfcc_data).shape)
|
#print(np.array(mfcc_data).shape)
|
||||||
|
|
||||||
|
@ -13,7 +13,7 @@ DATA_PATH_MFCC = str(Path.cwd()) + "/mfcc_data.json"
|
|||||||
|
|
||||||
# Loads data from the json file and reshapes X_data(samples, 1, 208) and y_data(samples, 1)
|
# Loads data from the json file and reshapes X_data(samples, 1, 208) and y_data(samples, 1)
|
||||||
# Input: JSON path
|
# Input: JSON path
|
||||||
# Ouput: X(mfcc data), y(labels)
|
# Ouput: X(mfcc data), y(labels), session_lengths
|
||||||
def load_data_from_json(data_path):
|
def load_data_from_json(data_path):
|
||||||
|
|
||||||
with open(data_path, "r") as fp:
|
with open(data_path, "r") as fp:
|
||||||
@ -27,11 +27,13 @@ def load_data_from_json(data_path):
|
|||||||
y = np.array(data["labels"])
|
y = np.array(data["labels"])
|
||||||
y = y.reshape(y.shape[0], 1)
|
y = y.reshape(y.shape[0], 1)
|
||||||
#print(y.shape)
|
#print(y.shape)
|
||||||
|
|
||||||
|
session_lengths = data['session_lengths']
|
||||||
|
|
||||||
|
|
||||||
print("Data succesfully loaded!")
|
print("Data succesfully loaded!")
|
||||||
|
|
||||||
return X, y
|
return X, y, session_lengths
|
||||||
|
|
||||||
# Plots the training history with two subplots. First training and test accuracy, and then
|
# Plots the training history with two subplots. First training and test accuracy, and then
|
||||||
# loss with respect to epochs
|
# loss with respect to epochs
|
||||||
@ -62,17 +64,56 @@ def plot_history(history):
|
|||||||
|
|
||||||
plt.show()
|
plt.show()
|
||||||
|
|
||||||
# Takes in data and labels, and splits it into train, validation and test sets
|
# Takes in data and labels, and splits it into train, validation and test sets by percentage
|
||||||
# Input: Data, labels, whether to shuffle, % validatiion, % test
|
# Input: Data, labels, whether to shuffle, % validatiion, % test
|
||||||
# Ouput: X_train, X_validation, X_test, y_train, y_validation, y_test
|
# Ouput: X_train, X_validation, X_test, y_train, y_validation, y_test
|
||||||
def prepare_datasets_percentsplit(X, y, shuffle_vars:bool, validation_size=0.2, test_size=0.25,):
|
def prepare_datasets_percentsplit(X, y, shuffle_vars:bool, validation_size=0.2, test_size=0.25,):
|
||||||
|
|
||||||
# create train, validation and test split
|
# Create train, validation and test split
|
||||||
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=test_size, shuffle=shuffle_vars)
|
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=test_size, shuffle=shuffle_vars)
|
||||||
X_train, X_validation, y_train, y_validation = train_test_split(X_train, y_train, test_size=validation_size, shuffle=shuffle_vars)
|
X_train, X_validation, y_train, y_validation = train_test_split(X_train, y_train, test_size=validation_size, shuffle=shuffle_vars)
|
||||||
|
|
||||||
return X_train, X_validation, X_test, y_train, y_validation, y_test
|
return X_train, X_validation, X_test, y_train, y_validation, y_test
|
||||||
|
|
||||||
|
# Takes in data, labels, and session_lengths and splits it into train and test sets by session_index
|
||||||
|
# Input: Data, labels, session_lengths, test_session_index
|
||||||
|
# Ouput: X_train, X_test, y_train, y_test
|
||||||
|
def prepare_datasets_sessions(X, y, session_lengths, test_session_index=4, nr_subjects=5):
|
||||||
|
|
||||||
|
subject_starting_index = 0
|
||||||
|
X_train = np.empty((1, 1, 208))
|
||||||
|
y_train = np.empty((1, 208))
|
||||||
|
X_test = np.empty((1, 1, 208))
|
||||||
|
y_test = np.empty((1, 208))
|
||||||
|
|
||||||
|
for i in range(nr_subjects):
|
||||||
|
|
||||||
|
start_test_index = sum(session_lengths[i][:test_session_index])
|
||||||
|
end_test_index = start_test_index + session_lengths[i][test_session_index-1]
|
||||||
|
end_subject_index = sum(session_lengths[i])
|
||||||
|
if start_test_index == subject_starting_index:
|
||||||
|
X_test.append(X[start_test_index:end_test_index])
|
||||||
|
y_test.append(y[start_test_index:end_test_index])
|
||||||
|
X_train.append(X[end_test_index:end_subject_index])
|
||||||
|
y_train.append(y[end_test_index:end_subject_index])
|
||||||
|
|
||||||
|
elif end_test_index == end_subject_index:
|
||||||
|
X_train.append(X[subject_starting_index:start_test_index])
|
||||||
|
y_train.append(y[subject_starting_index:start_test_index])
|
||||||
|
X_test.append(X[start_test_index:end_test_index])
|
||||||
|
y_test.append(y[start_test_index:end_test_index])
|
||||||
|
else:
|
||||||
|
X_train.append(X[subject_starting_index:start_test_index])
|
||||||
|
y_train.append(y[subject_starting_index:start_test_index])
|
||||||
|
X_test.append(X[start_test_index:end_test_index])
|
||||||
|
y_test.append(y[start_test_index:end_test_index])
|
||||||
|
X_train.append(X[end_test_index:end_subject_index])
|
||||||
|
y_train.append(y[end_test_index:end_subject_index])
|
||||||
|
subject_starting_index = end_subject_index
|
||||||
|
|
||||||
|
|
||||||
|
return X_train, X_test, y_train, y_test
|
||||||
|
|
||||||
# Creates a RNN_LSTM neural network model
|
# Creates a RNN_LSTM neural network model
|
||||||
# Input: input shape, classes of classification
|
# Input: input shape, classes of classification
|
||||||
# Ouput: model:Keras.model
|
# Ouput: model:Keras.model
|
||||||
@ -119,14 +160,14 @@ def train(model, batch_size, epochs, X_train, X_validation, y_train, y_validatio
|
|||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
|
|
||||||
# Load data
|
# Load data
|
||||||
X, y = load_data_from_json(DATA_PATH_MFCC)
|
X, y, session_lengths = load_data_from_json(DATA_PATH_MFCC)
|
||||||
|
|
||||||
# Get prepared data: train, validation, and test
|
# Get prepared data: train, validation, and test
|
||||||
X_train, X_validation, X_test, y_train, y_validation, y_test = prepare_datasets_percentsplit(X, y,
|
(X_train, X_validation,
|
||||||
validation_size=0.2,
|
X_test, y_train,
|
||||||
test_size=0.25,
|
y_validation,
|
||||||
shuffle_vars=True)
|
y_test) = prepare_datasets_percentsplit(X, y, validation_size=0.2, test_size=0.25, shuffle_vars=True)
|
||||||
print(X_train.shape)
|
#print(X_train.shape)
|
||||||
|
|
||||||
# Make model
|
# Make model
|
||||||
model = RNN_LSTM(input_shape=(1, 208))
|
model = RNN_LSTM(input_shape=(1, 208))
|
||||||
|
Binary file not shown.
592096
mfcc_data.json
592096
mfcc_data.json
File diff suppressed because it is too large
Load Diff
Loading…
Reference in New Issue
Block a user