4ba390a268
into the mfcc json file
188 lines
6.6 KiB
Python
188 lines
6.6 KiB
Python
import json
|
|
from python_speech_features.python_speech_features.base import mfcc
|
|
import numpy as np
|
|
from sklearn.model_selection import train_test_split
|
|
import tensorflow as tf
|
|
import tensorflow.keras as keras
|
|
from pathlib import Path
|
|
import pandas as pd
|
|
import matplotlib.pyplot as plt
|
|
|
|
# Path to json file that stores MFCCs and subject labels for each processed sample
|
|
DATA_PATH_MFCC = str(Path.cwd()) + "/mfcc_data.json"
|
|
|
|
# Loads data from the json file and reshapes X_data(samples, 1, 208) and y_data(samples, 1)
|
|
# Input: JSON path
|
|
# Ouput: X(mfcc data), y(labels), session_lengths
|
|
def load_data_from_json(data_path):
|
|
|
|
with open(data_path, "r") as fp:
|
|
data = json.load(fp)
|
|
|
|
# convert lists to numpy arraysls
|
|
X = np.array(data['mfcc'])
|
|
X = X.reshape(X.shape[0], 1, X.shape[1])
|
|
#print(X.shape)
|
|
|
|
y = np.array(data["labels"])
|
|
y = y.reshape(y.shape[0], 1)
|
|
#print(y.shape)
|
|
|
|
session_lengths = data['session_lengths']
|
|
|
|
|
|
print("Data succesfully loaded!")
|
|
|
|
return X, y, session_lengths
|
|
|
|
# Plots the training history with two subplots. First training and test accuracy, and then
|
|
# loss with respect to epochs
|
|
# Input: History(from model.fit(...))
|
|
# Ouput: None -> plot
|
|
def plot_history(history):
|
|
"""Plots accuracy/loss for training/validation set as a function of the epochs
|
|
:param history: Training history of model
|
|
:return:
|
|
"""
|
|
|
|
fig, axs = plt.subplots(2)
|
|
|
|
# create accuracy sublpot
|
|
axs[0].plot(history.history["accuracy"], label="train accuracy")
|
|
axs[0].plot(history.history["val_accuracy"], label="test accuracy")
|
|
axs[0].set_ylabel("Accuracy")
|
|
axs[0].legend(loc="lower right")
|
|
axs[0].set_title("Accuracy eval")
|
|
|
|
# create error sublpot
|
|
axs[1].plot(history.history["loss"], label="train error")
|
|
axs[1].plot(history.history["val_loss"], label="test error")
|
|
axs[1].set_ylabel("Error")
|
|
axs[1].set_xlabel("Epoch")
|
|
axs[1].legend(loc="upper right")
|
|
axs[1].set_title("Error eval")
|
|
|
|
plt.show()
|
|
|
|
# Takes in data and labels, and splits it into train, validation and test sets by percentage
|
|
# Input: Data, labels, whether to shuffle, % validatiion, % test
|
|
# Ouput: X_train, X_validation, X_test, y_train, y_validation, y_test
|
|
def prepare_datasets_percentsplit(X, y, shuffle_vars:bool, validation_size=0.2, test_size=0.25,):
|
|
|
|
# Create train, validation and test split
|
|
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=test_size, shuffle=shuffle_vars)
|
|
X_train, X_validation, y_train, y_validation = train_test_split(X_train, y_train, test_size=validation_size, shuffle=shuffle_vars)
|
|
|
|
return X_train, X_validation, X_test, y_train, y_validation, y_test
|
|
|
|
# Takes in data, labels, and session_lengths and splits it into train and test sets by session_index
|
|
# Input: Data, labels, session_lengths, test_session_index
|
|
# Ouput: X_train, X_test, y_train, y_test
|
|
def prepare_datasets_sessions(X, y, session_lengths, test_session_index=4, nr_subjects=5):
|
|
|
|
subject_starting_index = 0
|
|
X_train = np.empty((1, 1, 208))
|
|
y_train = np.empty((1, 208))
|
|
X_test = np.empty((1, 1, 208))
|
|
y_test = np.empty((1, 208))
|
|
|
|
for i in range(nr_subjects):
|
|
|
|
start_test_index = sum(session_lengths[i][:test_session_index])
|
|
end_test_index = start_test_index + session_lengths[i][test_session_index-1]
|
|
end_subject_index = sum(session_lengths[i])
|
|
if start_test_index == subject_starting_index:
|
|
X_test.append(X[start_test_index:end_test_index])
|
|
y_test.append(y[start_test_index:end_test_index])
|
|
X_train.append(X[end_test_index:end_subject_index])
|
|
y_train.append(y[end_test_index:end_subject_index])
|
|
|
|
elif end_test_index == end_subject_index:
|
|
X_train.append(X[subject_starting_index:start_test_index])
|
|
y_train.append(y[subject_starting_index:start_test_index])
|
|
X_test.append(X[start_test_index:end_test_index])
|
|
y_test.append(y[start_test_index:end_test_index])
|
|
else:
|
|
X_train.append(X[subject_starting_index:start_test_index])
|
|
y_train.append(y[subject_starting_index:start_test_index])
|
|
X_test.append(X[start_test_index:end_test_index])
|
|
y_test.append(y[start_test_index:end_test_index])
|
|
X_train.append(X[end_test_index:end_subject_index])
|
|
y_train.append(y[end_test_index:end_subject_index])
|
|
subject_starting_index = end_subject_index
|
|
|
|
|
|
return X_train, X_test, y_train, y_test
|
|
|
|
# Creates a RNN_LSTM neural network model
|
|
# Input: input shape, classes of classification
|
|
# Ouput: model:Keras.model
|
|
def RNN_LSTM(input_shape, nr_classes=5):
|
|
"""Generates RNN-LSTM model
|
|
:param input_shape (tuple): Shape of input set
|
|
:return model: RNN-LSTM model
|
|
"""
|
|
|
|
# build network topology
|
|
model = keras.Sequential()
|
|
|
|
# 2 LSTM layers
|
|
model.add(keras.layers.LSTM(64, input_shape=input_shape, return_sequences=True))
|
|
model.add(keras.layers.LSTM(64))
|
|
|
|
# dense layer
|
|
model.add(keras.layers.Dense(64, activation='relu'))
|
|
model.add(keras.layers.Dropout(0.3))
|
|
|
|
# output layer
|
|
model.add(keras.layers.Dense(nr_classes, activation='softmax'))
|
|
|
|
return model
|
|
|
|
# Trains the model
|
|
# Input: Keras.model, batch_size, nr epochs, training, and validation data
|
|
# Ouput: History
|
|
def train(model, batch_size, epochs, X_train, X_validation, y_train, y_validation):
|
|
|
|
optimiser = keras.optimizers.Adam(learning_rate=0.0001)
|
|
model.compile(optimizer=optimiser,
|
|
loss='sparse_categorical_crossentropy',
|
|
metrics=['accuracy'])
|
|
|
|
history = model.fit(X_train,
|
|
y_train,
|
|
validation_data=(X_validation, y_validation),
|
|
batch_size=batch_size,
|
|
epochs=epochs)
|
|
return history
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
# Load data
|
|
X, y, session_lengths = load_data_from_json(DATA_PATH_MFCC)
|
|
|
|
# Get prepared data: train, validation, and test
|
|
(X_train, X_validation,
|
|
X_test, y_train,
|
|
y_validation,
|
|
y_test) = prepare_datasets_percentsplit(X, y, validation_size=0.2, test_size=0.25, shuffle_vars=True)
|
|
#print(X_train.shape)
|
|
|
|
# Make model
|
|
model = RNN_LSTM(input_shape=(1, 208))
|
|
model.summary()
|
|
|
|
# Train network
|
|
history = train(model, X_train, X_validation, y_train, y_validation, batch_size=64, epochs=30)
|
|
|
|
# plot accuracy/error for training and validation
|
|
plot_history(history)
|
|
|
|
# evaluate model on test set
|
|
test_loss, test_acc = model.evaluate(X_test, y_test, verbose=2)
|
|
print('\nTest accuracy:', test_acc)
|
|
|
|
|
|
|