EMG_Biometrics_2021/Handle_emg_data.py

50 lines
1.7 KiB
Python
Raw Normal View History

import pandas as pd
from pathlib import Path
from pandas.core.frame import DataFrame
class Data_container:
def __init__(self, subject_nr:int, subject_name:str):
self.subject_nr = subject_nr
self.subject_name = subject_name
self.data_dict = {'left': [None]*8, 'right': [None]*8}
class CSV_handler:
def __init__(self):
self.working_dir = str(Path.cwd())
self.data_container_dict = {} # Dict with keys equal subject numbers and values equal the relvant datacontainer
2021-06-22 19:00:51 +00:00
# Makes dataframe from the csv files in the working directory
def make_df(self, filename):
filepath = self.working_dir + str(filename)
df = pd.read_csv(filepath)
return df
2021-06-22 19:00:51 +00:00
# Extracts out the timestamp and the selected emg signal into a new dataframe and stores the data on the subject
def get_time_emg_table(self, filename:str, emg_nr:int):
tot_data_frame = self.make_df(filename)
emg_str = 'emg' + str(emg_nr)
2021-06-22 19:00:51 +00:00
filtered_df = tot_data_frame[["timestamp", emg_str]]
return filtered_df
def store_df(self, filename:str, emg_nr:int, which_arm:str, data_container:Data_container):
df = self.get_min_max_timestamp(filename, emg_nr)
# Links the retrieved data with the subjects data_container
subject_nr = data_container.subject_nr
self.data_container_dict[subject_nr] = data_container
# Places the data correctly:
2021-06-24 08:06:01 +00:00
if which_arm == 'left':
data_container.data_dict['left'][emg_nr+1] = df
2021-06-22 19:00:51 +00:00
2021-06-23 13:56:35 +00:00
def get_emg_str(emg_nr):
return 'emg' + str(emg_nr)
2021-06-22 19:00:51 +00:00
2021-06-23 13:56:35 +00:00
def get_min_max_timestamp(df:DataFrame):
2021-06-24 08:06:01 +00:00
min = df['timestamp'].min()
max = df['timestamp'].max()
2021-06-23 13:56:35 +00:00
return min, max