import pandas as pd from pathlib import Path from pandas.core.frame import DataFrame class Data_container: def __init__(self, subject_nr:int, subject_name:str): self.subject_nr = subject_nr self.subject_name = subject_name self.data_dict = {'left': [None]*8, 'right': [None]*8} class CSV_handler: def __init__(self): self.working_dir = str(Path.cwd()) self.data_container_dict = {} # Dict with keys equal subject numbers and values equal the relvant datacontainer # Makes dataframe from the csv files in the working directory def make_df(self, filename): filepath = self.working_dir + str(filename) df = pd.read_csv(filepath) return df # Extracts out the timestamp and the selected emg signal into a new dataframe and stores the data on the subject def get_time_emg_table(self, filename:str, emg_nr:int): tot_data_frame = self.make_df(filename) emg_str = 'emg' + str(emg_nr) filtered_df = tot_data_frame[["timestamp", emg_str]] return filtered_df def store_df(self, filename:str, emg_nr:int, which_arm:str, data_container:Data_container): df = self.get_min_max_timestamp(filename, emg_nr) # Links the retrieved data with the subjects data_container subject_nr = data_container.subject_nr self.data_container_dict[subject_nr] = data_container # Places the data correctly: if which_arm == 'left': data_container.data_dict['left'][emg_nr+1] = df def get_emg_str(emg_nr): return 'emg' + str(emg_nr) def get_min_max_timestamp(df:DataFrame): min = df['timestamp'].min() max = df['timestamp'].max() return min, max