zpwiki/pages/students/2016/lukas_pokryvka/README.md

176 lines
8.2 KiB
Markdown

---
title: Lukáš Pokrývka
published: true
taxonomy:
category: [dp2021,bp2019]
tag: [gpu,cloud]
author: Daniel Hladek
---
# Lukáš Pokrývka
*Rok začiatku štúdia:* 2016
## Diplomový projekt 2 2020
Ciele na semester:
- Pripraviť tabuľku s výsledkami experimentov v rôznych konfuguráciách
- Napísať stručný report (cca 8 strán) vo forme článku.
Zásobník úloh :
- Ten istý scenár spustiť v rôznych podmienkach a zmerať čas.
- Trénovanie na jednej karte na jednom stroji
- tesla
- xavier
- Trénovanie na dvoch kartách na jednom stroji
- idoc DONE
- titan
- možno trénovanie na 4 kartách na jednom
- quadra
- *Trénovanie na dvoch kartách na dvoch strojoch pomocou NCCL (idoc, tesla)*
- možno trénovanie na 2 kartách na dvoch strojoch (quadra plus idoc).
Virtuálne stretnutie 27.10.2020
Stav:
- Trénovanie na procesore, na 1 GPU, na 2 GPU na idoc
- Príprava podkladov na trénovanie na dvoch strojoch pomocou Pytorch.
Úlohy na ďďalšie stretnutie:
- Štdúdium odbornej literatúry a vypracovanie poznámok.
- Pokračovať v otvorených úlohách zo zásobníka
- Vypracované skripty uložiť na GIT repozitár
- vytvorte repozitár dp2021
Stretnutie 2.10.2020
Urobené https://github.com/LukasPokryvka/YELP-on-GPU
- demonštračná úloha pre automatické hodnotenie reštaurácií na základe recenzie v anglickom jazyku, dátová sada yelp.
- preštudovaná kniha NLP with Pytorch, NLP in Action.
- trénovanie na NVIDIA RTX2070 Super.
Úlohy do ďalšieho stretnutia:
- Prejsť odborné publikácie na tému "benchmarking" a "parallel training of neural networks".
- Zapísať si relevantné bibliografické odkazy.
- Zapísať poznámky
- Použiť index scopus alebo scholar
- Trénovanie na jednej karte na jednom stroji
- tesla.fei.tuke.sk
- Trénovanie na dvoch kartách na jednom stroji - zistite čas trénovania a spotrebu pamäte.
- idoc
## Diplomový projekt 1 2020
Paralelné trénovanie neurónových sietí pomocou knižnice Pytorch.
Úlohy na semester:
- podrobne si naštudovať vybranú metódu trénovania neurónových sietí
- identifikujte možný spôsob paralelizácie
- natrénujte zvolený model metódou paralelizácie
Revízia 11.6:
- Prebieha nákup https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-agx-xavier/
- zatiaľ NCCL nefunguje na Jetson Nano, funguje na Jetson Xavier?
- Spustenie paralelného trénovania PyTorch https://pytorch.org/docs/stable/distributed.html#launch-utility
- Spustenie paralelného trénovania Fairseq https://fairseq.readthedocs.io/en/latest/getting_started.html#distributed-training
Revízia 13.5:
Pozrite si odkazy na paralelné trénovanie:
- Knižnica pre neuronové siete podobná TensorFlow https://pytorch.org
- Trénovanie WordEmbedding v PyTorch https://pytorch.org/tutorials/beginner/nlp/word_embeddings_tutorial.html
- Toolkit na medziprocesovú komunikáciu https://developer.nvidia.com/nccl Podporuje aj trénovanie na viacerých výpočtových uzloch naraz. PyTorch podporuje NCCL aj Goo toolit
- Toolkit na medziprocesovú komunikáciu https://github.com/facebookincubator/gloo
- Paralelné trénovanie pomocou Pytorch https://pytorch.org/docs/stable/distributed.html /
Virtuálne stretnutie 14.4:
Nové úlohy:
- rozbehať knižnicu NCCL na servri idoc
- Preskúmať možnosti zakúpenia [NVIDIA Jetson](https://www.banggood.com/NVIDIA-Jetson-Nano-Developer-Embedded-Development-Board-A57-Artificial-Intelligence-AI-Development-Platform-p-1519173.html?gpla=1&gmcCountry=SK&currency=EUR&createTmp=1&utm_source=googleshopping&utm_medium=cpc_bgs&utm_content=lijing&utm_campaign=ssc-sk-ele-0309&ad_id=424274501985&gclid=Cj0KCQjw2PP1BRCiARIsAEqv-pTspekjYB4EACHoOyFRq41LhNM2dQ532-fTAsjzZPy9-2aH7H9cEh0aAuf0EALw_wcB&cur_warehouse=CN) / pre vedúceho
- nájsť vhodnú neurónovú sieť ktorá bude vedieť využívať NCCL, optimálne založenú na PyTorchm napr. [Fairseq](https://github.com/pytorch/fairseq)
Revízia 14.4.
- Natrénovaný FastText a GenSim word embedding model na slovenských dátach.
Revízia 9.4.:
Nové úlohy:
Natrénujte word embedding model na veľkých dátach (odkaz poskytnutý). Môžete použiť server idoc.
Nové úlohy:
- Pozrite si [metódy vyhodnotenia embedding modelov](https://duckduckgo.com/?t=ffab&q=word+embedding+evaluation&ia=web). Ako by ste postupovali pri vyhodnotení slovenského modelu?
- Pozrite si https://spacy.io/usage/training
- Pozrite si [repozitáre a výsledky týkajúce sa Spacy](/topics/spacy).
- Vyhodnotte slovenský spacy model
Stretnutie 9.3.2020
Úlohy na ďalšie stretnutie:
- Skúste natrénovať slovenský word2vec model podľa tutoriálu: http://spark.apache.org/docs/latest/ml-features.html#word2vec (podľa dát z emailu)
- Pozrite si niečo o metóde BERT
- https://medium.com/huggingface/introducing-fastbert-a-simple-deep-learning-library-for-bert-models-89ff763ad384
- https://github.com/huggingface/transformers
## Tímový projekt 2019
*Úlohy tímového projektu:*
- Vypracujte min. 4 stranový rešerš na tému: "Paralelné spracovanie prirodzeného jazyka" (využitie napr. s word2vec, word embeddings, GloVe, fastText).
- Citujte min. 10 najvýznamnejších bibliografických zdrojov.
*Písomná práca:* [Paralelné spracovanie prirodzeného jazyka](./timovy_projekt)
## Diplomová práca 2021
### Paralelné trénovanie neurónových sietí
*Meno vedúceho:* Ing. Daniel Hládek, PhD.
*Návrh na zadanie DP:*
1. Vypracujte prehľad literatúry na tému "Paralelné trénovanie neurónových sietí".
2. Vyberte vhodnú metódu paralelného trénovania.
3. Pripravte dáta a vykonajte sadu experimentov pre overenie funkčnosti a výkonu paralelného trénovania.
4. Navrhnite možné zlepšenia paralelného trénovania neurónových sietí.
- Zaujímavá príručka [Word2vec na Spark](http://spark.apache.org/docs/latest/ml-features.html#word2vec)
### Priebeh práce
*1. Pokus o natrénovanie modelu pomocou knižnice Gensim*
Ako prvý nástroj na zoznámenie sa s trénovaním W2V som zvolil Gensim. Nevýhodou knižnice je, že pri trénovaní nevyužíva GPU v žiadnom prípade. Podľa zdrojov na internete je však Gensim násobne rýchlejšia knižnica pri implementácii na menšie korpusy (https://rare-technologies.com/gensim-word2vec-on-cpu-faster-than-word2veckeras-on-gpu-incubator-student-blog/). Keďže môj korpus má približne 30GB, trénovanie pomocou Gensim by zrejme nebol najlepší nápad. Preto som si z korpusu vytiahol prvých 10,000 riadkov a otestoval implementáciu na tomto súbore. Celý skript je dostupný na [gensim_W2V.py](./dp2021/scripts/gensim_w2v.py).
Výsledok nebol vôbec presný, čo sa vzhľadom na veľkosť korpusu dalo očakávať. Pri slove letisko bola však zhoda vysoká, čo potvrdzuje správnosť implementácie.
![Výsledok implementácie Gensim](./gensim.PNG)
Keďže som mal problém skript s plným korpusom spustiť na školskom serveri, v ďalšom riešení chcem využiť aj GPU. V úvahu pripadá aj rozdelenie korpusu na viacero častí s tým, že sa zachová kontext.
*2. Natrénovanie slovenského modelu pomocou knižnice fasttext*
Ako druhú možnosť na natrénovanie slovenského modelu som využil fasttext, knižnicu od Facebook-u. Prostredie a všetky dependencies som si vytvoril pomocou Anacondy. Následne som si naklonoval projekt z gitu (https://github.com/facebookresearch/fastText.git). Fasstext poskytuje jednoduchý nástroj na vyčistenie dát, ktorý všetky slová pretransformuje na lowercase a oddelí ich od čiarok, bodiek, atď... Následne je potrebné správne nastaviť spúšťacie parametre a zvoliť si metódu CBOW alebo skip-gram. V mojom prípade som zvolil 2-gram, dimenzionalitu vektorov 200, a nastavil som počet epochov na 10, pomocou ktorých sa vhybovosť výrazne znížila. Taktiež je možné nastaviť, koľko jadier procesora sa má využívať pre multi-threading. Na dátach o veľkosti približne 13GB trvalo trénovanie takmer 24 hodín. Výstupom su 2 súbory *.bin a *.vec. Prvý súbor obsahuje celý natrénovaný model a môže byť ďalej používaný a načítavaný podľa potreby, druhý súbor obsahuje vektory slov, jeden riadok pre každé slovo.