Přidat peft/full_model.py
This commit is contained in:
parent
0f8c53c21c
commit
f29c2f7888
165
peft/full_model.py
Normal file
165
peft/full_model.py
Normal file
@ -0,0 +1,165 @@
|
||||
import numpy as np
|
||||
import torch
|
||||
from datasets import load_dataset
|
||||
from sklearn.metrics import precision_recall_fscore_support, precision_recall_curve
|
||||
from transformers import (
|
||||
AutoTokenizer,
|
||||
AutoModelForSequenceClassification,
|
||||
Trainer,
|
||||
TrainingArguments,
|
||||
set_seed
|
||||
)
|
||||
from peft import get_peft_model, LoraConfig, TaskType
|
||||
|
||||
# Set seed for reproducibility
|
||||
set_seed(42)
|
||||
|
||||
# Load dataset
|
||||
ds = load_dataset("TUKE-KEMT/hate_speech_slovak")
|
||||
train_dataset = ds['train']
|
||||
train_test_split = ds['train'].train_test_split(test_size=0.2, seed=42)
|
||||
val_dataset = train_test_split['test']
|
||||
train_dataset = train_test_split['train']
|
||||
test_dataset = ds['test']
|
||||
|
||||
# Load tokenizer and base model
|
||||
model_name = "ApoTro/slovak-t5-small"
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_name, force_download=True)
|
||||
model = AutoModelForSequenceClassification.from_pretrained(model_name, num_labels=2)
|
||||
|
||||
# Apply LoRA tuning
|
||||
peft_config = LoraConfig(
|
||||
task_type=TaskType.SEQ_CLS,
|
||||
inference_mode=False,
|
||||
r=8,
|
||||
lora_alpha=32,
|
||||
lora_dropout=0.1
|
||||
)
|
||||
model = get_peft_model(model, peft_config)
|
||||
|
||||
def tokenize(batch):
|
||||
return tokenizer(
|
||||
batch["text"],
|
||||
padding="max_length",
|
||||
truncation=True,
|
||||
max_length=128
|
||||
)
|
||||
|
||||
def prepare_dataset(dataset):
|
||||
dataset = dataset.map(tokenize, batched=True, remove_columns=["text"])
|
||||
return dataset.rename_column("label", "labels")
|
||||
|
||||
train_dataset = prepare_dataset(train_dataset)
|
||||
val_dataset = prepare_dataset(val_dataset)
|
||||
test_dataset = prepare_dataset(test_dataset)
|
||||
|
||||
# Set device
|
||||
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
||||
model.to(device)
|
||||
|
||||
# Define training arguments
|
||||
training_args = TrainingArguments(
|
||||
output_dir="./hate_speech_model",
|
||||
per_device_train_batch_size=8,
|
||||
per_device_eval_batch_size=16,
|
||||
learning_rate=3e-5,
|
||||
num_train_epochs=7,
|
||||
evaluation_strategy="epoch",
|
||||
save_strategy="epoch",
|
||||
load_best_model_at_end=True,
|
||||
metric_for_best_model="f1",
|
||||
greater_is_better=True,
|
||||
warmup_steps=100,
|
||||
weight_decay=0.01,
|
||||
report_to="none",
|
||||
seed=42,
|
||||
logging_steps=10,
|
||||
gradient_accumulation_steps=2,
|
||||
lr_scheduler_type="cosine",
|
||||
logging_dir='./logs',
|
||||
)
|
||||
|
||||
def compute_metrics(pred):
|
||||
logits = pred.predictions[0]
|
||||
preds = logits.argmax(-1)
|
||||
labels = pred.label_ids
|
||||
precision, recall, f1, _ = precision_recall_fscore_support(
|
||||
labels, preds, average='binary'
|
||||
)
|
||||
return {
|
||||
'precision': precision,
|
||||
'recall': recall,
|
||||
'f1': f1
|
||||
}
|
||||
|
||||
trainer = Trainer(
|
||||
model=model,
|
||||
args=training_args,
|
||||
train_dataset=train_dataset,
|
||||
eval_dataset=val_dataset,
|
||||
compute_metrics=compute_metrics,
|
||||
)
|
||||
|
||||
trainer.train()
|
||||
trainer.save_model("./hate_speech_model/best_model")
|
||||
|
||||
# Reload fine-tuned model
|
||||
model = AutoModelForSequenceClassification.from_pretrained("./hate_speech_model/best_model")
|
||||
trainer = Trainer(
|
||||
model=model,
|
||||
args=training_args,
|
||||
eval_dataset=val_dataset,
|
||||
compute_metrics=compute_metrics,
|
||||
)
|
||||
|
||||
def find_optimal_threshold(trainer, dataset):
|
||||
predictions = trainer.predict(dataset)
|
||||
logits = predictions.predictions
|
||||
|
||||
if isinstance(logits, tuple):
|
||||
logits = logits[0]
|
||||
logits = torch.tensor(logits)
|
||||
|
||||
probs = torch.nn.functional.softmax(logits, dim=-1)
|
||||
positive_probs = probs[:, 1].numpy()
|
||||
true_labels = predictions.label_ids
|
||||
|
||||
precisions, recalls, thresholds = precision_recall_curve(true_labels, positive_probs)
|
||||
f1_scores = 2 * (precisions * recalls) / (precisions + recalls + 1e-8)
|
||||
|
||||
optimal_idx = np.argmax(f1_scores[:-1])
|
||||
optimal_threshold = thresholds[optimal_idx]
|
||||
|
||||
return optimal_threshold, precisions[optimal_idx], recalls[optimal_idx], f1_scores[optimal_idx]
|
||||
|
||||
def evaluate_with_threshold(trainer, dataset, threshold=0.5):
|
||||
predictions = trainer.predict(dataset)
|
||||
logits = predictions.predictions
|
||||
|
||||
if isinstance(logits, tuple):
|
||||
logits = logits[0]
|
||||
logits = torch.tensor(logits)
|
||||
|
||||
probs = torch.nn.functional.softmax(logits, dim=-1)
|
||||
predicted_labels = (probs[:, 1] > threshold).numpy().astype(int)
|
||||
true_labels = predictions.label_ids
|
||||
|
||||
precision, recall, f1, _ = precision_recall_fscore_support(
|
||||
true_labels, predicted_labels, average='binary', zero_division=0
|
||||
)
|
||||
|
||||
return {
|
||||
'precision': precision,
|
||||
'recall': recall,
|
||||
'f1': f1
|
||||
}
|
||||
|
||||
print("\n🔍 Finding optimal threshold...")
|
||||
optimal_threshold, best_precision, best_recall, best_f1 = find_optimal_threshold(trainer, val_dataset)
|
||||
print(f"✅ Optimal threshold: {optimal_threshold:.4f}")
|
||||
|
||||
print("\n📊 Evaluating on the test set with the optimal threshold:")
|
||||
optimized_results = evaluate_with_threshold(trainer, test_dataset, threshold=optimal_threshold)
|
||||
print(f"🎯 Precision: {optimized_results['precision']:.4f}")
|
||||
print(f"🎯 Recall: {optimized_results['recall']:.4f}")
|
||||
print(f"🎯 F1-score: {optimized_results['f1']:.4f}")
|
Loading…
Reference in New Issue
Block a user