Odstranit full_train/train_model.py

This commit is contained in:
Tetiana Mohorian 2025-02-04 14:26:45 +00:00
parent 5b6f7958bc
commit 0f8c53c21c

View File

@ -1,165 +0,0 @@
import numpy as np
import torch
from datasets import load_dataset
from sklearn.metrics import precision_recall_fscore_support, precision_recall_curve
from transformers import (
AutoTokenizer,
AutoModelForSequenceClassification,
Trainer,
TrainingArguments,
set_seed
)
from peft import get_peft_model, LoraConfig, TaskType
# Set seed for reproducibility
set_seed(42)
# Load dataset
ds = load_dataset("TUKE-KEMT/hate_speech_slovak")
train_dataset = ds['train']
train_test_split = ds['train'].train_test_split(test_size=0.2, seed=42)
val_dataset = train_test_split['test']
train_dataset = train_test_split['train']
test_dataset = ds['test']
# Load tokenizer and base model
model_name = "ApoTro/slovak-t5-small"
tokenizer = AutoTokenizer.from_pretrained(model_name, force_download=True)
model = AutoModelForSequenceClassification.from_pretrained(model_name, num_labels=2)
# Apply LoRA tuning
peft_config = LoraConfig(
task_type=TaskType.SEQ_CLS,
inference_mode=False,
r=8,
lora_alpha=32,
lora_dropout=0.1
)
model = get_peft_model(model, peft_config)
def tokenize(batch):
return tokenizer(
batch["text"],
padding="max_length",
truncation=True,
max_length=128
)
def prepare_dataset(dataset):
dataset = dataset.map(tokenize, batched=True, remove_columns=["text"])
return dataset.rename_column("label", "labels")
train_dataset = prepare_dataset(train_dataset)
val_dataset = prepare_dataset(val_dataset)
test_dataset = prepare_dataset(test_dataset)
# Set device
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
# Define training arguments
training_args = TrainingArguments(
output_dir="./hate_speech_model",
per_device_train_batch_size=8,
per_device_eval_batch_size=16,
learning_rate=3e-5,
num_train_epochs=7,
evaluation_strategy="epoch",
save_strategy="epoch",
load_best_model_at_end=True,
metric_for_best_model="f1",
greater_is_better=True,
warmup_steps=100,
weight_decay=0.01,
report_to="none",
seed=42,
logging_steps=10,
gradient_accumulation_steps=2,
lr_scheduler_type="cosine",
logging_dir='./logs',
)
def compute_metrics(pred):
logits = pred.predictions[0]
preds = logits.argmax(-1)
labels = pred.label_ids
precision, recall, f1, _ = precision_recall_fscore_support(
labels, preds, average='binary'
)
return {
'precision': precision,
'recall': recall,
'f1': f1
}
trainer = Trainer(
model=model,
args=training_args,
train_dataset=train_dataset,
eval_dataset=val_dataset,
compute_metrics=compute_metrics,
)
trainer.train()
trainer.save_model("./hate_speech_model/best_model")
# Reload fine-tuned model
model = AutoModelForSequenceClassification.from_pretrained("./hate_speech_model/best_model")
trainer = Trainer(
model=model,
args=training_args,
eval_dataset=val_dataset,
compute_metrics=compute_metrics,
)
def find_optimal_threshold(trainer, dataset):
predictions = trainer.predict(dataset)
logits = predictions.predictions
if isinstance(logits, tuple):
logits = logits[0]
logits = torch.tensor(logits)
probs = torch.nn.functional.softmax(logits, dim=-1)
positive_probs = probs[:, 1].numpy()
true_labels = predictions.label_ids
precisions, recalls, thresholds = precision_recall_curve(true_labels, positive_probs)
f1_scores = 2 * (precisions * recalls) / (precisions + recalls + 1e-8)
optimal_idx = np.argmax(f1_scores[:-1])
optimal_threshold = thresholds[optimal_idx]
return optimal_threshold, precisions[optimal_idx], recalls[optimal_idx], f1_scores[optimal_idx]
def evaluate_with_threshold(trainer, dataset, threshold=0.5):
predictions = trainer.predict(dataset)
logits = predictions.predictions
if isinstance(logits, tuple):
logits = logits[0]
logits = torch.tensor(logits)
probs = torch.nn.functional.softmax(logits, dim=-1)
predicted_labels = (probs[:, 1] > threshold).numpy().astype(int)
true_labels = predictions.label_ids
precision, recall, f1, _ = precision_recall_fscore_support(
true_labels, predicted_labels, average='binary', zero_division=0
)
return {
'precision': precision,
'recall': recall,
'f1': f1
}
print("\n🔍 Finding optimal threshold...")
optimal_threshold, best_precision, best_recall, best_f1 = find_optimal_threshold(trainer, val_dataset)
print(f"✅ Optimal threshold: {optimal_threshold:.4f}")
print("\n📊 Evaluating on the test set with the optimal threshold:")
optimized_results = evaluate_with_threshold(trainer, test_dataset, threshold=optimal_threshold)
print(f"🎯 Precision: {optimized_results['precision']:.4f}")
print(f"🎯 Recall: {optimized_results['recall']:.4f}")
print(f"🎯 F1-score: {optimized_results['f1']:.4f}")