forked from KEMT/zpwiki
4.2 KiB
4.2 KiB
Maroš Harahus
Diplomový projekt 2020
Zdroje:
Doplnenie podpory morfologického značkovania slovenského jazyka do nlp frameworku (spacy alebo flair)
- Úlohy na tento semester:
- Pozrieť jazykové zdroje z https://www.clarin.eu/resource-families/manually-annotated-corpora (MultextEast)
- Oboznámte sa so sadou morfologických značiek Universal Dependencies https://universaldependencies.org/sk/index.html
- Oboznámte sa so sadou SNK https://korpus.sk/morpho.html
- Natrénovať Spacy Model s POS a s pretrénovaním
Stretnutie 12.6.2020:
- Pretrénovanie Fasttext a trénovanie POS Spacy modelu - ešte treba vylepšiť presnosť
K zápočtu:
- Finálny okomentovaný skript pre trénovanie POS modelu podľa Slovak Treebank s pretrénovaním Fasttext.
- Ak sa dá tak pri trénovaní využite GPU
- Zistite výslednú presnosť, mala by byť nad 80 percent.
- Porovnajte s presnosťou bez pretrénovania.
Zásobník úloh:
- Vykonať viacero experimentov s pretrénovaním - rôzne modely, rôzne veľkosti adaptačných dát a zostaviť tabuľku
- Opísať pretrénovanie, zhrnúť vplyv pretrénovania na trénovanie v krátkom článku cca 10 strán.
- skúsiť prezentovať na lokálnej konferencii, (Data, Znalosti and WIKT) alebo fakultný zborník (krátka verzia diplomovky).
- Využiť korpus Multext East pri trénovaní. Vytvoriť mapovanie Multext Tagov na SNK Tagy.
Virtuálne stretnutie 15.5.2020:
- Spustenie exitujúceho skriptu pre trénovanie POS modelu z repozitára spacy-skmodel, problém nastal pri NER dátach.
- Vytvorený repozitár
Nové úlohy:
- Podrobne preštudovať a realizovať spacy pretrain
- Blog o Spacy pretrain
Revízia 9.4.2020:
Report o doterajšej práci:
- naštudovanie Fasttext
- implementácia do Spacy
- úprava modelu v spacy na rozpoznanie jazyka
- snaha o spacy-udpipe pre non-English text
Nové úlohy:
- pridajte zdrojový text a odkaz na "implementáciu".
- natrénujte model podľa https://git.kemt.fei.tuke.sk/dano/spacy-skmodel
- skúste pridať "word-embeddingy" z fasttext do trénovania.
- vyhodnoťte natrénovaný model - zistite presnosť značkovania. Aký vplyv majú embeddingy na presnosť?
- porozmýšľajte ako sa dá presnosť zlepšiť.
Stretnutie 5.3.2020:
Úlohy na ďalšie stretnutie:
- zobrať alebo vytvoriť fasttext model
- pozrieť sa na spacy pretrain - tam sa bude dať využiť fasttext model
- vložiť ho do spacy modelu pomocou
spacy pretrain
- pozrieť si http://nl.ijs.si/ME/V4/ morfosyntaktická anotácia MULTEXT
- porozmýšľať ako využiť korpus "MultextEast" - potrebné vytvoriť mapovanie značiek na SNK Tagset
Poznámka:
- Aktivovaná Omega
- Pozrieť sa na https://git.kemt.fei.tuke.sk/dano/spacy-skmodel/src/branch/master/sources/slovak-treebank , aktivovaný prístup
- už existuje mapovanie Universal Dependencie na SNK tagset
Stretnutie: 20.2.2020:
Úlohy na ďalšie stretnutie:
- Pozrieť https://spacy.io/usage/training#tagger-parser
- Pozrieť si čo je word embedding - word2vec, fasttext, glove
- Nájsť spôsob ako využiť existujúci model word embedding pri trénovaní https://fasttext.cc/docs/en/pretrained-vectors.html
- Ako natrénovať Spacy POS model?
Návrh na zadanie DP
Názov diplomovej práce: Štatistická morfologická anotácia slovenského jazyka
- Vypracujte prehľad spôsobov morfologickej anotácie slovenského jazyka.
- Pripravte trénovacie dáta vo vhodnom formáte a natrénujte štatistický model morfologického značkovania
- Vyhodnoťte presnosť značkovania a navrhnite možné zlepšenia.
Tímový projekt 2019
Projektové stránky:
- Vypracovať tutoriál pre prácu s nástrojom Spacy pre úlohu zisťovania gramatických značiek (part-of-speech). Súčasťou tutoriálu by mali byť aj odkazy na relevantné zdroje (odborné članky, min. 4).