zpwiki/pages/topics/question/README.md

227 lines
5.6 KiB
Markdown

---
title: Question Answering
published: true
taxonomy:
category: [project]
tag: [annotation,question-answer,nlp]
author: Daniel Hladek
---
# Question Answering
- [Project repository](https://git.kemt.fei.tuke.sk/dano/annotation) (private)
- [Annotation Manual for question annotation](navod)
- [Annotation Manual for validations](validacie)
- [Annotation Manual for unanswerable questions](nezodpovedatelne)
- [Summary database application](https://app.question.tukekemt,xyz)
## Project Description
- Create a clone of [SQuaD 2.0](https://rajpurkar.github.io/SQuAD-explorer/) in the Slovak language
- Setup annotation infrastructure with [Prodigy](https://prodi.gy/)
- Perform and evaluate annotations of [Wikipedia data](https://dumps.wikimedia.org/backup-index.html).
Auxiliary tasks:
- Consider using machine translation
- Train and evaluate Question Answering model
## People
- Daniel Hládek (responsible researcher).
- Tomáš Kuchárik (student, help with web app).
- Ján Staš (BERT model).
- [Ondrej Megela](/students/2018/ondrej_megela), [Oleh Bilykh](/students/2018/oleh_bilykh), Matej Čarňanský (auxiliary tasks).
- other students and annotators (annotations).
## Tasks
### Raw Data Preparation
Input: Wikipedia
Output: a set of paragraphs
1. Obtaining and parsing of wikipedia dump
1. Selecting feasible paragraphs
Done:
- Wiki parsing script (Daniel Hládek)
- PageRank script (Daniel Hládek)
- selection of paragraphs: select all good paragraphs and shuffle
- fix minor errors
To be done:
- Select the largest articles (to be compatible with squad).
Notes:
- PageRank Causes bias to geography, random selection might be the best
- [75 best articles](https://sk.wikipedia.org/wiki/Wikip%C3%A9dia:Zoznam_najlep%C5%A1%C3%ADch_%C4%8Dl%C3%A1nkov)
- [167 good articles](https://sk.wikipedia.org/wiki/Wikip%C3%A9dia:Zoznam_dobr%C3%BDch_%C4%8Dl%C3%A1nkov)
- [Wiki Facts](https://sk.wikipedia.org/wiki/Wikip%C3%A9dia:Zauj%C3%ADmavosti)
## Finished Tasks
### Annotation Manual
Output: Recommendations for annotators
Done:
- Web Page for annotators (Daniel Hládek)
- Modivation video (Daniel Hládek)
- Video with instructions (Daniel Hládek)
bn application?
### Question Annotation
An annotation recipe for Prodigy
Input: A set of paragraphs
Output: 5 questions for each paragraph
Done:
- a data preparation script (Daniel Hládek)
- annotation recipe for Prodigy (Daniel Hládek)
- deployment at [question.tukekemt.xyz](http://question.tukekemt.xyz) (only from tuke) (Daniel Hládek)
- answer annotation together with question (Daniel Hládek)
- prepare final input paragraphs (dataset)
### Annotation Web Application
Annotation work summary, web applicatiobn
Input: Database of annotations
Output: Summary of work performed by each annotator
Done:
- application template (Tomáš Kuchárik)
- Dockerfile (Daniel Hládek)
- web application for annotation analysis in Flask (Tomáš Kuchárik, Daniel Hládek)
- application deployment (Daniel Hládek)
- extract annotations from question annotation in squad format (Daniel Hladek)
### Annotation Validation
Input: annnotated questions and paragraph
Output: good annotated questions
Done:
- Recipe for validations (binary annotation for paragraphs, question and answers, text fields for correction of question and answer). (Daniel Hládek)
- Deployment
## Tasks in progress
### Unanswerable question annotation
Input: validated questions and answers
Output: Unanswerable questions and answers
Done:
- Annotation manual
- Annotation interface
- Database schema modifications
- Modification of the database application
- Export of validations
In progress:
- Annotaion process optimization
### Final Data Export
Input: Validations and unanswerable questions
Output: Final database in SQUAD format
Done:
- Preliminary export script
To be done:
- Final export script
- Database web visualization
- Prepare development set
## Resources
### Bibligraphy
- Reading Wikipedia to Answer Open-Domain Questions, Danqi Chen, Adam Fisch, Jason Weston, Antoine Bordes
Facebook Research
- SQuAD: 100,000+ Questions for Machine Comprehension of Text https://arxiv.org/abs/1606.05250
- [WDaqua](https://wdaqua.eu/our-work/) publications
### Existing Datasets
- [Squad](https://rajpurkar.github.io/SQuAD-explorer/) The Stanford Question Answering Dataset(SQuAD) (Rajpurkar et al., 2016)
- [WebQuestions](https://github.com/brmson/dataset-factoid-webquestions)
- [Freebase](https://en.wikipedia.org/wiki/Freebase)
## Intern tasks
Week 1: Intro
- Get acquainted with the project and Squad Database
- Download the database and study the bibliography
- Study [Prodigy annnotation](https://Prodi.gy) tool
- Read [SQuAD: 100,000+ Questions for Machine Comprehension of Text](https://arxiv.org/abs/1606.05250)
- Read [Know What You Don't Know: Unanswerable Questions for SQuAD](https://arxiv.org/abs/1806.03822)
Output:
- Short report
Week 2-4 The System
Select and train a working question answering system
Output:
- a deployment script with comments for a selected question answering system
Week 5-7 The Model
Take a working training recipe (can use English data), a script with comments or Jupyter Notebook
Output:
- a trained model
- evaluation of the model (if possible)
### Question Answering Model
Training the model with annotated data
Input: An annotated QA database
Output: An evaluated model for QA
To be done:
- Selecting existing modelling approach
- Evaluation set selection
- Model evaluation
- Supporting the annotation with the model (pre-selecting answers)
In progress:
- Preliminary model (Ján Staš and Matej Čarňanský)