Bakalarska_praca/private_gpt/components/ingest/ingest_helper.py

106 lines
3.9 KiB
Python
Raw Normal View History

2024-09-27 16:52:16 +00:00
import logging
from pathlib import Path
from llama_index.core.readers import StringIterableReader
from llama_index.core.readers.base import BaseReader
from llama_index.core.readers.json import JSONReader
from llama_index.core.schema import Document
logger = logging.getLogger(__name__)
# Inspired by the `llama_index.core.readers.file.base` module
def _try_loading_included_file_formats() -> dict[str, type[BaseReader]]:
try:
from llama_index.readers.file.docs import ( # type: ignore
DocxReader,
HWPReader,
PDFReader,
)
from llama_index.readers.file.epub import EpubReader # type: ignore
from llama_index.readers.file.image import ImageReader # type: ignore
from llama_index.readers.file.ipynb import IPYNBReader # type: ignore
from llama_index.readers.file.markdown import MarkdownReader # type: ignore
from llama_index.readers.file.mbox import MboxReader # type: ignore
from llama_index.readers.file.slides import PptxReader # type: ignore
from llama_index.readers.file.tabular import PandasCSVReader # type: ignore
from llama_index.readers.file.video_audio import ( # type: ignore
VideoAudioReader,
)
except ImportError as e:
raise ImportError("`llama-index-readers-file` package not found") from e
default_file_reader_cls: dict[str, type[BaseReader]] = {
".hwp": HWPReader,
".pdf": PDFReader,
".docx": DocxReader,
".pptx": PptxReader,
".ppt": PptxReader,
".pptm": PptxReader,
".jpg": ImageReader,
".png": ImageReader,
".jpeg": ImageReader,
".mp3": VideoAudioReader,
".mp4": VideoAudioReader,
".csv": PandasCSVReader,
".epub": EpubReader,
".md": MarkdownReader,
".mbox": MboxReader,
".ipynb": IPYNBReader,
}
return default_file_reader_cls
# Patching the default file reader to support other file types
FILE_READER_CLS = _try_loading_included_file_formats()
FILE_READER_CLS.update(
{
".json": JSONReader,
}
)
class IngestionHelper:
"""Helper class to transform a file into a list of documents.
This class should be used to transform a file into a list of documents.
These methods are thread-safe (and multiprocessing-safe).
"""
@staticmethod
def transform_file_into_documents(
file_name: str, file_data: Path
) -> list[Document]:
documents = IngestionHelper._load_file_to_documents(file_name, file_data)
for document in documents:
document.metadata["file_name"] = file_name
IngestionHelper._exclude_metadata(documents)
return documents
@staticmethod
def _load_file_to_documents(file_name: str, file_data: Path) -> list[Document]:
logger.debug("Transforming file_name=%s into documents", file_name)
extension = Path(file_name).suffix
reader_cls = FILE_READER_CLS.get(extension)
if reader_cls is None:
logger.debug(
"No reader found for extension=%s, using default string reader",
extension,
)
# Read as a plain text
string_reader = StringIterableReader()
return string_reader.load_data([file_data.read_text()])
logger.debug("Specific reader found for extension=%s", extension)
return reader_cls().load_data(file_data)
@staticmethod
def _exclude_metadata(documents: list[Document]) -> None:
logger.debug("Excluding metadata from count=%s documents", len(documents))
for document in documents:
document.metadata["doc_id"] = document.doc_id
# We don't want the Embeddings search to receive this metadata
document.excluded_embed_metadata_keys = ["doc_id"]
# We don't want the LLM to receive these metadata in the context
document.excluded_llm_metadata_keys = ["file_name", "doc_id", "page_label"]