import logging from pathlib import Path from llama_index.core.readers import StringIterableReader from llama_index.core.readers.base import BaseReader from llama_index.core.readers.json import JSONReader from llama_index.core.schema import Document logger = logging.getLogger(__name__) # Inspired by the `llama_index.core.readers.file.base` module def _try_loading_included_file_formats() -> dict[str, type[BaseReader]]: try: from llama_index.readers.file.docs import ( # type: ignore DocxReader, HWPReader, PDFReader, ) from llama_index.readers.file.epub import EpubReader # type: ignore from llama_index.readers.file.image import ImageReader # type: ignore from llama_index.readers.file.ipynb import IPYNBReader # type: ignore from llama_index.readers.file.markdown import MarkdownReader # type: ignore from llama_index.readers.file.mbox import MboxReader # type: ignore from llama_index.readers.file.slides import PptxReader # type: ignore from llama_index.readers.file.tabular import PandasCSVReader # type: ignore from llama_index.readers.file.video_audio import ( # type: ignore VideoAudioReader, ) except ImportError as e: raise ImportError("`llama-index-readers-file` package not found") from e default_file_reader_cls: dict[str, type[BaseReader]] = { ".hwp": HWPReader, ".pdf": PDFReader, ".docx": DocxReader, ".pptx": PptxReader, ".ppt": PptxReader, ".pptm": PptxReader, ".jpg": ImageReader, ".png": ImageReader, ".jpeg": ImageReader, ".mp3": VideoAudioReader, ".mp4": VideoAudioReader, ".csv": PandasCSVReader, ".epub": EpubReader, ".md": MarkdownReader, ".mbox": MboxReader, ".ipynb": IPYNBReader, } return default_file_reader_cls # Patching the default file reader to support other file types FILE_READER_CLS = _try_loading_included_file_formats() FILE_READER_CLS.update( { ".json": JSONReader, } ) class IngestionHelper: """Helper class to transform a file into a list of documents. This class should be used to transform a file into a list of documents. These methods are thread-safe (and multiprocessing-safe). """ @staticmethod def transform_file_into_documents( file_name: str, file_data: Path ) -> list[Document]: documents = IngestionHelper._load_file_to_documents(file_name, file_data) for document in documents: document.metadata["file_name"] = file_name IngestionHelper._exclude_metadata(documents) return documents @staticmethod def _load_file_to_documents(file_name: str, file_data: Path) -> list[Document]: logger.debug("Transforming file_name=%s into documents", file_name) extension = Path(file_name).suffix reader_cls = FILE_READER_CLS.get(extension) if reader_cls is None: logger.debug( "No reader found for extension=%s, using default string reader", extension, ) # Read as a plain text string_reader = StringIterableReader() return string_reader.load_data([file_data.read_text()]) logger.debug("Specific reader found for extension=%s", extension) return reader_cls().load_data(file_data) @staticmethod def _exclude_metadata(documents: list[Document]) -> None: logger.debug("Excluding metadata from count=%s documents", len(documents)) for document in documents: document.metadata["doc_id"] = document.doc_id # We don't want the Embeddings search to receive this metadata document.excluded_embed_metadata_keys = ["doc_id"] # We don't want the LLM to receive these metadata in the context document.excluded_llm_metadata_keys = ["file_name", "doc_id", "page_label"]