Compare commits

...

2 Commits

Author SHA1 Message Date
Skudalen
ec6c2c9dcc fix: fix index bug in save mfcc to json 2021-07-09 17:19:56 +02:00
Skudalen
4ba390a268 chore: add information about sessions
into the mfcc json file
2021-07-09 16:58:16 +02:00
4 changed files with 132 additions and 28 deletions

View File

@ -528,12 +528,12 @@ class NN_handler:
4: [],
5: []
}
# Should med 4 sessions * (~150, 208) of mfcc samples per person. One DataFrame per subject
self.mfcc_samples_per_subject = {1: None,
2: None,
3: None,
4: None,
5: None
# Should med 4 sessions * (~150, 208) of mfcc samples per person. One [DataFrame, session_length_list] per subject
self.mfcc_samples_per_subject = {1: [],
2: [],
3: [],
4: [],
5: []
}
# GET method for reg_samples_dict
@ -627,8 +627,8 @@ class NN_handler:
# Takes in all EMG session Dataframe and creates DataFrame of MFCC samples
# Input: DataFrame(shape[1]=16, EMG data)
# Output: DataFrame(merged MFCC data, shape: (n, 13*16))
def make_mfcc_df_from_session_df(self, session_df) -> DataFrame:
# Output: DataFrame(merged MFCC data, shape: (n, 13*16)), length of session datapoints
def make_mfcc_df_from_session_df(self, session_df):
session_df.rename(columns={0:'timestamp'}, inplace=True)
samplerate = get_samplerate(session_df)
attach_func = lambda list_1, list_2: list_1.extend(list_2)
@ -645,16 +645,19 @@ class NN_handler:
mfcc_i = DataFrame(mfcc_i).dropna()
mfcc_i['combined'] = mfcc_i.values.tolist()
df = result_df.combine(mfcc_i['combined'], attach_func)
session_length = (len(result_df.index)) # Add the length of session data points
return result_df
return result_df, session_length
# Merges MFCC data from all sessions and stores the sample data in
# the NN_handler's mfcc_samples_per_subject dict
# Input: None(NN_handler)
# Output: None -> stores in NN_handler
# Output: None -> stores in NN_handler [samples, session_length_list] for each subject
def store_mfcc_samples(self) -> None:
for subject_nr in range(5):
subj_samples = []
session_length_list = []
for session_nr in range(4):
list_of_emg = self.get_emg_list(subject_nr+1, session_nr+1)
tot_session_df = self.make_subj_sample(list_of_emg)
@ -663,11 +666,12 @@ class NN_handler:
if tot_session_df.isnull().values.any():
print('NaN in: subject', subject_nr+1, 'session:', session_nr+1, 'where? HERE')
mfcc_df_i = self.make_mfcc_df_from_session_df(tot_session_df)
mfcc_df_i, session_length = self.make_mfcc_df_from_session_df(tot_session_df)
subj_samples.append(mfcc_df_i)
session_length_list.append(session_length)
result_df = pd.concat(subj_samples, axis=0, ignore_index=True)
self.mfcc_samples_per_subject[subject_nr+1] = result_df
self.mfcc_samples_per_subject[subject_nr+1] = [result_df, session_length_list]
# Makes MFCC data from reg_samples_per_subject and stores it in a json file
@ -735,7 +739,9 @@ class NN_handler:
data = {
"mapping": [],
"labels": [],
"mfcc": []
"mfcc": [],
"session_lengths": []
}
raw_data_dict = self.get_mfcc_samples_dict()
@ -746,13 +752,15 @@ class NN_handler:
# save subject label in the mapping
subject_label = 'Subject ' + str(key)
print("\nProcessing: {}".format(subject_label))
data["mapping"].append(subject_label)
data["mapping"].append(subject_label) # Subject label
data["session_lengths"].append(value[1]) # List[subject][session_length_list]
# process all samples per subject
for i, sample in enumerate(value):
for i, sample in enumerate(value[0]):
data["labels"].append(key-1)
data["mfcc"].append(sample)
data["labels"].append(key-1) # Subject nr
data["mfcc"].append(sample) # MFCC sample on same index
print("sample:{} is done".format(i+1))
#print(np.array(mfcc_data).shape)

View File

@ -13,7 +13,7 @@ DATA_PATH_MFCC = str(Path.cwd()) + "/mfcc_data.json"
# Loads data from the json file and reshapes X_data(samples, 1, 208) and y_data(samples, 1)
# Input: JSON path
# Ouput: X(mfcc data), y(labels)
# Ouput: X(mfcc data), y(labels), session_lengths
def load_data_from_json(data_path):
with open(data_path, "r") as fp:
@ -21,17 +21,22 @@ def load_data_from_json(data_path):
# convert lists to numpy arraysls
X = np.array(data['mfcc'])
#print(X.shape)
X = X.reshape(X.shape[0], 1, X.shape[1])
#print(X.shape)
y = np.array(data["labels"])
#print(y.shape)
y = y.reshape(y.shape[0], 1)
#print(y.shape)
session_lengths = np.array(data['session_lengths'])
#print(session_lengths.shape)
print("Data succesfully loaded!")
return X, y
return X, y, session_lengths
# Plots the training history with two subplots. First training and test accuracy, and then
# loss with respect to epochs
@ -62,17 +67,61 @@ def plot_history(history):
plt.show()
# Takes in data and labels, and splits it into train, validation and test sets
# Takes in data and labels, and splits it into train, validation and test sets by percentage
# Input: Data, labels, whether to shuffle, % validatiion, % test
# Ouput: X_train, X_validation, X_test, y_train, y_validation, y_test
def prepare_datasets_percentsplit(X, y, shuffle_vars:bool, validation_size=0.2, test_size=0.25,):
def prepare_datasets_percentsplit(X, y, shuffle_vars, validation_size=0.2, test_size=0.25,):
# create train, validation and test split
# Create train, validation and test split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=test_size, shuffle=shuffle_vars)
X_train, X_validation, y_train, y_validation = train_test_split(X_train, y_train, test_size=validation_size, shuffle=shuffle_vars)
return X_train, X_validation, X_test, y_train, y_validation, y_test
# Takes in data, labels, and session_lengths and splits it into train and test sets by session_index
# Input: Data, labels, session_lengths, test_session_index
# Ouput: X_train, X_test, y_train, y_test
def prepare_datasets_sessions(X, y, session_lengths, test_session_index=4, nr_subjects=5):
#X_train = np.empty((1, 1, 208))
#y_train = np.empty((1, 208))
#X_test = np.empty((1, 1, 208))
#y_test = np.empty((1, 208))
X = X.tolist()
y = y.tolist()
session_lengths = session_lengths.tolist()
X_train = y_train = X_test = y_test = []
subject_starting_index = 0
for i in range(nr_subjects):
start_test_index = sum(session_lengths[i][:test_session_index])
end_test_index = start_test_index + session_lengths[i][test_session_index-1]
end_subject_index = sum(session_lengths[i])
if start_test_index == subject_starting_index:
X_test.append(X[start_test_index:end_test_index])
y_test.append(y[start_test_index:end_test_index])
X_train.append(X[end_test_index:end_subject_index])
y_train.append(y[end_test_index:end_subject_index])
elif end_test_index == end_subject_index:
X_train.append(X[subject_starting_index:start_test_index])
y_train.append(y[subject_starting_index:start_test_index])
X_test.append(X[start_test_index:end_test_index])
y_test.append(y[start_test_index:end_test_index])
else:
X_train.append(X[subject_starting_index:start_test_index])
y_train.append(y[subject_starting_index:start_test_index])
X_test.append(X[start_test_index:end_test_index])
y_test.append(y[start_test_index:end_test_index])
X_train.append(X[end_test_index:end_subject_index])
y_train.append(y[end_test_index:end_subject_index])
subject_starting_index = end_subject_index
return np.array(X_train), np.array(X_test), np.array(y_train), np.array(y_test)
# Creates a RNN_LSTM neural network model
# Input: input shape, classes of classification
# Ouput: model:Keras.model
@ -119,15 +168,29 @@ def train(model, batch_size, epochs, X_train, X_validation, y_train, y_validatio
if __name__ == "__main__":
# Load data
X, y = load_data_from_json(DATA_PATH_MFCC)
X, y, session_lengths = load_data_from_json(DATA_PATH_MFCC)
print(X.shape)
print(y.shape)
print(session_lengths.shape)
# Get prepared data: train, validation, and test
X_train, X_validation, X_test, y_train, y_validation, y_test = prepare_datasets_percentsplit(X, y,
validation_size=0.2,
test_size=0.25,
shuffle_vars=True)
print(X_train.shape)
'''
(X_train, X_validation,
X_test, y_train,
y_validation,
y_test) = prepare_datasets_percentsplit(X, y, validation_size=0.2, test_size=0.25, shuffle_vars=True)
'''
(X_train, X_test,
y_train, y_test) = prepare_datasets_sessions(X, y, session_lengths)
print(X_train.size)
print(X_train.shape)
print(X_test.shape)
print(y_train.shape)
print(y_test.shape)
'''
# Make model
model = RNN_LSTM(input_shape=(1, 208))
model.summary()
@ -141,6 +204,7 @@ if __name__ == "__main__":
# evaluate model on test set
test_loss, test_acc = model.evaluate(X_test, y_test, verbose=2)
print('\nTest accuracy:', test_acc)
'''

View File

@ -592075,5 +592075,37 @@
11.059385475491096,
-2.718611940111453
]
],
"session_lengths": [
[
162,
126,
157,
149
],
[
137,
127,
143,
127
],
[
178,
193,
180,
176
],
[
132,
115,
122,
123
],
[
151,
100,
102,
106
]
]
}