feat: add 1D convolution network in NNA
This commit is contained in:
parent
7ad034fa95
commit
968759d205
@ -241,13 +241,19 @@ def session_cross_validation(model_name:str, X, y, session_lengths, nr_sessions,
|
||||
session_training_results = []
|
||||
for i in range(nr_sessions):
|
||||
|
||||
X_train_session, X_test_session, y_train_session, y_test_session = prepare_datasets_sessions(X, y, session_lengths, i)
|
||||
|
||||
# Model:
|
||||
if model_name == 'LSTM':
|
||||
model = LSTM(input_shape=(1, 208))
|
||||
elif model_name == 'GRU':
|
||||
model = GRU(input_shape=(1, 208))
|
||||
elif model_name == 'CNN':
|
||||
model = CNN(input_shape=(52, 52, 104))
|
||||
print(X_train_session.shape)
|
||||
print(X_test_session.shape)
|
||||
X_train_session = np.reshape(X_train_session, (X_train_session.shape[0], 208, 1))
|
||||
X_test_session = np.reshape(X_test_session, (X_test_session.shape[0], 208, 1))
|
||||
model = CNN(input_shape=(208, 1))
|
||||
elif model_name == 'FNN':
|
||||
model = FFN(input_shape=(1, 208))
|
||||
else:
|
||||
@ -255,12 +261,6 @@ def session_cross_validation(model_name:str, X, y, session_lengths, nr_sessions,
|
||||
|
||||
model.summary()
|
||||
|
||||
X_train_session, X_test_session, y_train_session, y_test_session = prepare_datasets_sessions(X, y, session_lengths, i)
|
||||
if model_name == 'CNN':
|
||||
X_train_session = X_train_session[..., np.newaxis]
|
||||
X_test_session = X_test_session[..., np.newaxis]
|
||||
X_train_session = np.reshape(X_train_session, (X_train_session.shape[0], 52, 52, 104))
|
||||
X_test_session = np.reshape(X_test_session, (X_test_session.shape[0], 52, 52, 104))
|
||||
|
||||
train(model, X_train_session, y_train_session, verbose=1, batch_size=batch_size, epochs=epochs)
|
||||
test_loss, test_acc = model.evaluate(X_test_session, y_test_session, verbose=2)
|
||||
@ -326,21 +326,14 @@ def FFN(input_shape, nr_classes=5):
|
||||
def CNN(input_shape, nr_classes=5):
|
||||
|
||||
model = keras.Sequential(name='CNN_model')
|
||||
model.add(keras.layers.Conv2D(32, (3, 3), activation='relu', input_shape=input_shape))
|
||||
model.add(keras.layers.MaxPooling2D((3, 3), strides=(2, 2), padding='same'))
|
||||
model.add(keras.layers.BatchNormalization())
|
||||
#model.add(keras.layers.Input(name='the_input', shape=input_shape, dtype='float32'))
|
||||
model.add(keras.layers.Conv1D(32, kernel_size= 5, activation='relu', input_shape=input_shape)) # , input_shape=input_shape
|
||||
model.add(keras.layers.MaxPooling1D(pool_size=5))
|
||||
#model.add(keras.layers.BatchNormalization())
|
||||
|
||||
model.add(keras.layers.Conv2D(32, (3, 3), activation='relu'))
|
||||
model.add(keras.layers.MaxPooling2D((3, 3), strides=(2, 2), padding='same'))
|
||||
model.add(keras.layers.BatchNormalization())
|
||||
|
||||
model.add(keras.layers.Conv2D(32, (2, 2), activation='relu'))
|
||||
model.add(keras.layers.MaxPooling2D((2, 2), strides=(2, 2), padding='same'))
|
||||
model.add(keras.layers.BatchNormalization())
|
||||
|
||||
# flatten output and feed it into dense layer
|
||||
model.add(keras.layers.Flatten())
|
||||
model.add(keras.layers.Dense(64, activation='relu'))
|
||||
#model.add(keras.layers.GlobalAveragePooling1D())
|
||||
model.add(keras.layers.Dense(64, activation='relu')) # , input_shape=(...,1)
|
||||
model.add(keras.layers.Dropout(0.3))
|
||||
# Ouput layer
|
||||
model.add(keras.layers.Dense(nr_classes, activation='softmax', name='Softmax'))
|
||||
@ -371,14 +364,16 @@ if __name__ == "__main__":
|
||||
# y_train.shape = (2806-y_test, nr_subjects)
|
||||
# y_test.shape = (y_test(from session nr. ?), nr_subjects)
|
||||
|
||||
#X_train, X_test, y_train, y_test = prepare_datasets_sessions(X, y, session_lengths, TEST_SESSION_NR)
|
||||
X_train, X_test, y_train, y_test = prepare_datasets_sessions(X, y, session_lengths, TEST_SESSION_NR)
|
||||
|
||||
|
||||
#'''
|
||||
# ----- Make model ------
|
||||
#model_GRU = GRU(input_shape=(1, 208)) # (timestep, 13*16 MFCC coefficients)
|
||||
#model_LSTM = LSTM(input_shape=(1, 208)) # (timestep, 13*16 MFCC coefficients)
|
||||
model_CNN_1D = CNN(input_shape=(208, 1)) # (timestep, 13*16 MFCC coefficients)
|
||||
|
||||
model_CNN_1D.summary()
|
||||
#model_GRU.summary()
|
||||
#model_LSTM.summary()
|
||||
|
||||
@ -386,7 +381,7 @@ if __name__ == "__main__":
|
||||
# ----- Train network ------
|
||||
#history_GRU = train(model_GRU, X_train, y_train, verbose=VERBOSE, batch_size=BATCH_SIZE, epochs=EPOCHS)
|
||||
#history_LSTM = train(model_LSTM, X_train, y_train, verbose=VERBOSE, batch_size=BATCH_SIZE, epochs=EPOCHS)
|
||||
|
||||
history_CNN_1D = train(model_CNN_1D, np.reshape(X_train, (X_train.shape[0], 208, 1)), y_train, verbose=VERBOSE, batch_size=BATCH_SIZE, epochs=EPOCHS)
|
||||
|
||||
# ----- Plot train accuracy/error -----
|
||||
#plot_train_history(history)
|
||||
@ -397,9 +392,11 @@ if __name__ == "__main__":
|
||||
#print('\nTest accuracy GRU:', test_acc, '\n')
|
||||
#test_loss, test_acc = model_LSTM.evaluate(X_test, y_test, verbose=VERBOSE)
|
||||
#print('\nTest accuracy LSTM:', test_acc, '\n')
|
||||
test_loss, test_acc = model_CNN_1D.evaluate(np.reshape(X_test, (X_test.shape[0], 208, 1)), y_test, verbose=VERBOSE)
|
||||
print('\nTest accuracy CNN_1D:', test_acc, '\n')
|
||||
#'''
|
||||
|
||||
|
||||
'''
|
||||
# ----- Cross validation ------
|
||||
#average_GRU = session_cross_validation('GRU', X, y, session_lengths, NR_SESSIONS, BATCH_SIZE, EPOCHS)
|
||||
#verage_LSTM = session_cross_validation('LSTM', X, y, session_lengths, NR_SESSIONS, BATCH_SIZE, EPOCHS)
|
||||
@ -410,6 +407,7 @@ if __name__ == "__main__":
|
||||
#print('Crossvalidated GRU:', average_GRU)
|
||||
#print('Crossvalidated LSTM:', average_LSTM)
|
||||
#print('Crossvalidated FFN:', average_FFN)
|
||||
print('Crossvalidated CNN:', average_CNN)
|
||||
print('Cross-validated CNN:', average_CNN)
|
||||
print('\n')
|
||||
'''
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user