diff --git a/Neural_Network_Analysis.py b/Neural_Network_Analysis.py index c8022f1..9f1ec33 100644 --- a/Neural_Network_Analysis.py +++ b/Neural_Network_Analysis.py @@ -241,13 +241,19 @@ def session_cross_validation(model_name:str, X, y, session_lengths, nr_sessions, session_training_results = [] for i in range(nr_sessions): + X_train_session, X_test_session, y_train_session, y_test_session = prepare_datasets_sessions(X, y, session_lengths, i) + # Model: if model_name == 'LSTM': model = LSTM(input_shape=(1, 208)) elif model_name == 'GRU': model = GRU(input_shape=(1, 208)) elif model_name == 'CNN': - model = CNN(input_shape=(52, 52, 104)) + print(X_train_session.shape) + print(X_test_session.shape) + X_train_session = np.reshape(X_train_session, (X_train_session.shape[0], 208, 1)) + X_test_session = np.reshape(X_test_session, (X_test_session.shape[0], 208, 1)) + model = CNN(input_shape=(208, 1)) elif model_name == 'FNN': model = FFN(input_shape=(1, 208)) else: @@ -255,13 +261,7 @@ def session_cross_validation(model_name:str, X, y, session_lengths, nr_sessions, model.summary() - X_train_session, X_test_session, y_train_session, y_test_session = prepare_datasets_sessions(X, y, session_lengths, i) - if model_name == 'CNN': - X_train_session = X_train_session[..., np.newaxis] - X_test_session = X_test_session[..., np.newaxis] - X_train_session = np.reshape(X_train_session, (X_train_session.shape[0], 52, 52, 104)) - X_test_session = np.reshape(X_test_session, (X_test_session.shape[0], 52, 52, 104)) - + train(model, X_train_session, y_train_session, verbose=1, batch_size=batch_size, epochs=epochs) test_loss, test_acc = model.evaluate(X_test_session, y_test_session, verbose=2) session_training_results.append(test_acc) @@ -326,21 +326,14 @@ def FFN(input_shape, nr_classes=5): def CNN(input_shape, nr_classes=5): model = keras.Sequential(name='CNN_model') - model.add(keras.layers.Conv2D(32, (3, 3), activation='relu', input_shape=input_shape)) - model.add(keras.layers.MaxPooling2D((3, 3), strides=(2, 2), padding='same')) - model.add(keras.layers.BatchNormalization()) + #model.add(keras.layers.Input(name='the_input', shape=input_shape, dtype='float32')) + model.add(keras.layers.Conv1D(32, kernel_size= 5, activation='relu', input_shape=input_shape)) # , input_shape=input_shape + model.add(keras.layers.MaxPooling1D(pool_size=5)) + #model.add(keras.layers.BatchNormalization()) - model.add(keras.layers.Conv2D(32, (3, 3), activation='relu')) - model.add(keras.layers.MaxPooling2D((3, 3), strides=(2, 2), padding='same')) - model.add(keras.layers.BatchNormalization()) - - model.add(keras.layers.Conv2D(32, (2, 2), activation='relu')) - model.add(keras.layers.MaxPooling2D((2, 2), strides=(2, 2), padding='same')) - model.add(keras.layers.BatchNormalization()) - - # flatten output and feed it into dense layer model.add(keras.layers.Flatten()) - model.add(keras.layers.Dense(64, activation='relu')) + #model.add(keras.layers.GlobalAveragePooling1D()) + model.add(keras.layers.Dense(64, activation='relu')) # , input_shape=(...,1) model.add(keras.layers.Dropout(0.3)) # Ouput layer model.add(keras.layers.Dense(nr_classes, activation='softmax', name='Softmax')) @@ -371,14 +364,16 @@ if __name__ == "__main__": # y_train.shape = (2806-y_test, nr_subjects) # y_test.shape = (y_test(from session nr. ?), nr_subjects) - #X_train, X_test, y_train, y_test = prepare_datasets_sessions(X, y, session_lengths, TEST_SESSION_NR) + X_train, X_test, y_train, y_test = prepare_datasets_sessions(X, y, session_lengths, TEST_SESSION_NR) #''' # ----- Make model ------ #model_GRU = GRU(input_shape=(1, 208)) # (timestep, 13*16 MFCC coefficients) #model_LSTM = LSTM(input_shape=(1, 208)) # (timestep, 13*16 MFCC coefficients) + model_CNN_1D = CNN(input_shape=(208, 1)) # (timestep, 13*16 MFCC coefficients) + model_CNN_1D.summary() #model_GRU.summary() #model_LSTM.summary() @@ -386,7 +381,7 @@ if __name__ == "__main__": # ----- Train network ------ #history_GRU = train(model_GRU, X_train, y_train, verbose=VERBOSE, batch_size=BATCH_SIZE, epochs=EPOCHS) #history_LSTM = train(model_LSTM, X_train, y_train, verbose=VERBOSE, batch_size=BATCH_SIZE, epochs=EPOCHS) - + history_CNN_1D = train(model_CNN_1D, np.reshape(X_train, (X_train.shape[0], 208, 1)), y_train, verbose=VERBOSE, batch_size=BATCH_SIZE, epochs=EPOCHS) # ----- Plot train accuracy/error ----- #plot_train_history(history) @@ -397,9 +392,11 @@ if __name__ == "__main__": #print('\nTest accuracy GRU:', test_acc, '\n') #test_loss, test_acc = model_LSTM.evaluate(X_test, y_test, verbose=VERBOSE) #print('\nTest accuracy LSTM:', test_acc, '\n') + test_loss, test_acc = model_CNN_1D.evaluate(np.reshape(X_test, (X_test.shape[0], 208, 1)), y_test, verbose=VERBOSE) + print('\nTest accuracy CNN_1D:', test_acc, '\n') #''' - + ''' # ----- Cross validation ------ #average_GRU = session_cross_validation('GRU', X, y, session_lengths, NR_SESSIONS, BATCH_SIZE, EPOCHS) #verage_LSTM = session_cross_validation('LSTM', X, y, session_lengths, NR_SESSIONS, BATCH_SIZE, EPOCHS) @@ -410,6 +407,7 @@ if __name__ == "__main__": #print('Crossvalidated GRU:', average_GRU) #print('Crossvalidated LSTM:', average_LSTM) #print('Crossvalidated FFN:', average_FFN) - print('Crossvalidated CNN:', average_CNN) + print('Cross-validated CNN:', average_CNN) print('\n') + '''