feat: add 1D convolution network in NNA
This commit is contained in:
		
							parent
							
								
									7ad034fa95
								
							
						
					
					
						commit
						968759d205
					
				@ -241,13 +241,19 @@ def session_cross_validation(model_name:str, X, y, session_lengths, nr_sessions,
 | 
			
		||||
    session_training_results = []
 | 
			
		||||
    for i in range(nr_sessions):
 | 
			
		||||
 | 
			
		||||
        X_train_session, X_test_session, y_train_session, y_test_session = prepare_datasets_sessions(X, y, session_lengths, i)
 | 
			
		||||
    
 | 
			
		||||
        # Model:
 | 
			
		||||
        if model_name == 'LSTM':
 | 
			
		||||
            model = LSTM(input_shape=(1, 208))
 | 
			
		||||
        elif model_name == 'GRU':
 | 
			
		||||
            model = GRU(input_shape=(1, 208))
 | 
			
		||||
        elif model_name == 'CNN':
 | 
			
		||||
            model = CNN(input_shape=(52, 52, 104))
 | 
			
		||||
            print(X_train_session.shape)
 | 
			
		||||
            print(X_test_session.shape)
 | 
			
		||||
            X_train_session = np.reshape(X_train_session, (X_train_session.shape[0], 208, 1))
 | 
			
		||||
            X_test_session = np.reshape(X_test_session, (X_test_session.shape[0], 208, 1))
 | 
			
		||||
            model = CNN(input_shape=(208, 1))
 | 
			
		||||
        elif model_name == 'FNN':
 | 
			
		||||
            model = FFN(input_shape=(1, 208))
 | 
			
		||||
        else:
 | 
			
		||||
@ -255,13 +261,7 @@ def session_cross_validation(model_name:str, X, y, session_lengths, nr_sessions,
 | 
			
		||||
 | 
			
		||||
        model.summary()
 | 
			
		||||
 | 
			
		||||
        X_train_session, X_test_session, y_train_session, y_test_session = prepare_datasets_sessions(X, y, session_lengths, i)
 | 
			
		||||
        if model_name == 'CNN':
 | 
			
		||||
            X_train_session =  X_train_session[..., np.newaxis]
 | 
			
		||||
            X_test_session =  X_test_session[..., np.newaxis]
 | 
			
		||||
            X_train_session = np.reshape(X_train_session, (X_train_session.shape[0], 52, 52, 104))
 | 
			
		||||
            X_test_session = np.reshape(X_test_session, (X_test_session.shape[0], 52, 52, 104))
 | 
			
		||||
 | 
			
		||||
        
 | 
			
		||||
        train(model, X_train_session, y_train_session, verbose=1, batch_size=batch_size, epochs=epochs)
 | 
			
		||||
        test_loss, test_acc = model.evaluate(X_test_session, y_test_session, verbose=2)
 | 
			
		||||
        session_training_results.append(test_acc)
 | 
			
		||||
@ -326,21 +326,14 @@ def FFN(input_shape, nr_classes=5):
 | 
			
		||||
def CNN(input_shape, nr_classes=5):
 | 
			
		||||
 | 
			
		||||
    model = keras.Sequential(name='CNN_model')
 | 
			
		||||
    model.add(keras.layers.Conv2D(32, (3, 3), activation='relu', input_shape=input_shape))
 | 
			
		||||
    model.add(keras.layers.MaxPooling2D((3, 3), strides=(2, 2), padding='same'))
 | 
			
		||||
    model.add(keras.layers.BatchNormalization())
 | 
			
		||||
    #model.add(keras.layers.Input(name='the_input', shape=input_shape, dtype='float32'))
 | 
			
		||||
    model.add(keras.layers.Conv1D(32, kernel_size= 5, activation='relu', input_shape=input_shape))   # , input_shape=input_shape
 | 
			
		||||
    model.add(keras.layers.MaxPooling1D(pool_size=5))
 | 
			
		||||
    #model.add(keras.layers.BatchNormalization())
 | 
			
		||||
 | 
			
		||||
    model.add(keras.layers.Conv2D(32, (3, 3), activation='relu'))
 | 
			
		||||
    model.add(keras.layers.MaxPooling2D((3, 3), strides=(2, 2), padding='same'))
 | 
			
		||||
    model.add(keras.layers.BatchNormalization())
 | 
			
		||||
 | 
			
		||||
    model.add(keras.layers.Conv2D(32, (2, 2), activation='relu'))
 | 
			
		||||
    model.add(keras.layers.MaxPooling2D((2, 2), strides=(2, 2), padding='same'))
 | 
			
		||||
    model.add(keras.layers.BatchNormalization())
 | 
			
		||||
 | 
			
		||||
    # flatten output and feed it into dense layer
 | 
			
		||||
    model.add(keras.layers.Flatten())
 | 
			
		||||
    model.add(keras.layers.Dense(64, activation='relu'))
 | 
			
		||||
    #model.add(keras.layers.GlobalAveragePooling1D())
 | 
			
		||||
    model.add(keras.layers.Dense(64, activation='relu'))    # , input_shape=(...,1)
 | 
			
		||||
    model.add(keras.layers.Dropout(0.3))
 | 
			
		||||
    # Ouput layer
 | 
			
		||||
    model.add(keras.layers.Dense(nr_classes, activation='softmax', name='Softmax'))
 | 
			
		||||
@ -371,14 +364,16 @@ if __name__ == "__main__":
 | 
			
		||||
        # y_train.shape = (2806-y_test, nr_subjects)
 | 
			
		||||
        # y_test.shape = (y_test(from session nr. ?), nr_subjects)
 | 
			
		||||
 | 
			
		||||
    #X_train, X_test, y_train, y_test = prepare_datasets_sessions(X, y, session_lengths, TEST_SESSION_NR)
 | 
			
		||||
    X_train, X_test, y_train, y_test = prepare_datasets_sessions(X, y, session_lengths, TEST_SESSION_NR)
 | 
			
		||||
    
 | 
			
		||||
 | 
			
		||||
    #'''
 | 
			
		||||
    # ----- Make model ------
 | 
			
		||||
    #model_GRU = GRU(input_shape=(1, 208)) # (timestep, 13*16 MFCC coefficients)
 | 
			
		||||
    #model_LSTM = LSTM(input_shape=(1, 208)) # (timestep, 13*16 MFCC coefficients)
 | 
			
		||||
    model_CNN_1D = CNN(input_shape=(208, 1)) # (timestep, 13*16 MFCC coefficients)
 | 
			
		||||
    
 | 
			
		||||
    model_CNN_1D.summary()
 | 
			
		||||
    #model_GRU.summary()
 | 
			
		||||
    #model_LSTM.summary()
 | 
			
		||||
    
 | 
			
		||||
@ -386,7 +381,7 @@ if __name__ == "__main__":
 | 
			
		||||
    # ----- Train network ------
 | 
			
		||||
    #history_GRU = train(model_GRU, X_train, y_train, verbose=VERBOSE, batch_size=BATCH_SIZE, epochs=EPOCHS)
 | 
			
		||||
    #history_LSTM = train(model_LSTM, X_train, y_train, verbose=VERBOSE, batch_size=BATCH_SIZE, epochs=EPOCHS)
 | 
			
		||||
 | 
			
		||||
    history_CNN_1D = train(model_CNN_1D, np.reshape(X_train, (X_train.shape[0], 208, 1)), y_train, verbose=VERBOSE, batch_size=BATCH_SIZE, epochs=EPOCHS)
 | 
			
		||||
    
 | 
			
		||||
    # ----- Plot train accuracy/error -----
 | 
			
		||||
    #plot_train_history(history)
 | 
			
		||||
@ -397,9 +392,11 @@ if __name__ == "__main__":
 | 
			
		||||
    #print('\nTest accuracy GRU:', test_acc, '\n')
 | 
			
		||||
    #test_loss, test_acc = model_LSTM.evaluate(X_test, y_test, verbose=VERBOSE)
 | 
			
		||||
    #print('\nTest accuracy LSTM:', test_acc, '\n')
 | 
			
		||||
    test_loss, test_acc = model_CNN_1D.evaluate(np.reshape(X_test, (X_test.shape[0], 208, 1)), y_test, verbose=VERBOSE)
 | 
			
		||||
    print('\nTest accuracy CNN_1D:', test_acc, '\n')
 | 
			
		||||
    #'''
 | 
			
		||||
    
 | 
			
		||||
 | 
			
		||||
    '''
 | 
			
		||||
    # ----- Cross validation ------
 | 
			
		||||
    #average_GRU = session_cross_validation('GRU', X, y, session_lengths, NR_SESSIONS, BATCH_SIZE, EPOCHS)
 | 
			
		||||
    #verage_LSTM = session_cross_validation('LSTM', X, y, session_lengths, NR_SESSIONS, BATCH_SIZE, EPOCHS)
 | 
			
		||||
@ -410,6 +407,7 @@ if __name__ == "__main__":
 | 
			
		||||
    #print('Crossvalidated GRU:', average_GRU)
 | 
			
		||||
    #print('Crossvalidated LSTM:', average_LSTM)
 | 
			
		||||
    #print('Crossvalidated FFN:', average_FFN)
 | 
			
		||||
    print('Crossvalidated CNN:', average_CNN)
 | 
			
		||||
    print('Cross-validated CNN:', average_CNN)
 | 
			
		||||
    print('\n')
 | 
			
		||||
    '''
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
		Loading…
	
		Reference in New Issue
	
	Block a user