feat: implement func that gets df from

data_dict in handler
This commit is contained in:
Skudalen 2021-06-25 13:57:28 +02:00
parent 8f34ff6abf
commit 7b7181218e
2 changed files with 13 additions and 7 deletions

View File

@ -21,10 +21,10 @@ class Data_container:
class CSV_handler: class CSV_handler:
def __init__(self): def __init__(self, data_type):
self.working_dir = str(Path.cwd()) self.working_dir = str(Path.cwd())
self.data_container_dict = {} # Dict with keys equal subject numbers and values equal the relvant datacontainer self.data_container_dict = {} # Dict with keys equal subject numbers and values equal the relvant datacontainer
self.data_type = '' self.data_type = data_type
# Makes dataframe from the csv files in the working directory # Makes dataframe from the csv files in the working directory
def make_df(self, filename): def make_df(self, filename):
@ -443,6 +443,13 @@ class CSV_handler:
self.data_type = 'soft' self.data_type = 'soft'
return self.data_container_dict return self.data_container_dict
def get_df_from_data_dict(self, subject_nr, which_arm, round, emg_nr):
data_type = self.data_type
container = self.data_container_dict.get(subject_nr)
df = container.dict_list[round - 1].get(which_arm)[emg_nr]
return df
# Help: gets the str from emg nr # Help: gets the str from emg nr
def get_emg_str(emg_nr): def get_emg_str(emg_nr):
return 'emg' + str(emg_nr) return 'emg' + str(emg_nr)

View File

@ -70,11 +70,9 @@ def inverse_wavelet(df, cA_filt, cD_filt):
old_len = len(get_xory_from_df('y', df)) old_len = len(get_xory_from_df('y', df))
return y_new_values return y_new_values
# Takes in handler and detailes to denoise. Returns arrays and df
def denoice_dataset(handler:Handler.CSV_handler, subject_nr, which_arm, emg_nr, round): def denoice_dataset(handler:Handler.CSV_handler, subject_nr, which_arm, emg_nr, round):
data_type = handler.data_type
container = handler.data_container_dict.get(subject_nr)
df = container.dict_list[round - 1].get(which_arm)[emg_nr]
print(df.head) print(df.head)
N = get_xory_from_df('x', df) N = get_xory_from_df('x', df)
@ -82,7 +80,8 @@ def denoice_dataset(handler:Handler.CSV_handler, subject_nr, which_arm, emg_nr,
cA_filt, cD_filt = soft_threshold_filter(cA, cD) cA_filt, cD_filt = soft_threshold_filter(cA, cD)
y_values = inverse_wavelet(df, cA_filt, cD_filt) y_values = inverse_wavelet(df, cA_filt, cD_filt)
return pandas.DataFrame([N_trans, y_values]) df_new = pandas.DataFrame([N_trans, y_values])
return N, y_values, df_new