diff --git a/Handle_emg_data.py b/Handle_emg_data.py index 80f76fc..f194ee9 100644 --- a/Handle_emg_data.py +++ b/Handle_emg_data.py @@ -21,10 +21,10 @@ class Data_container: class CSV_handler: - def __init__(self): + def __init__(self, data_type): self.working_dir = str(Path.cwd()) self.data_container_dict = {} # Dict with keys equal subject numbers and values equal the relvant datacontainer - self.data_type = '' + self.data_type = data_type # Makes dataframe from the csv files in the working directory def make_df(self, filename): @@ -443,6 +443,13 @@ class CSV_handler: self.data_type = 'soft' return self.data_container_dict + def get_df_from_data_dict(self, subject_nr, which_arm, round, emg_nr): + data_type = self.data_type + container = self.data_container_dict.get(subject_nr) + df = container.dict_list[round - 1].get(which_arm)[emg_nr] + return df + + # Help: gets the str from emg nr def get_emg_str(emg_nr): return 'emg' + str(emg_nr) diff --git a/Signal_prep.py b/Signal_prep.py index f061de7..2c98681 100644 --- a/Signal_prep.py +++ b/Signal_prep.py @@ -70,11 +70,9 @@ def inverse_wavelet(df, cA_filt, cD_filt): old_len = len(get_xory_from_df('y', df)) return y_new_values - +# Takes in handler and detailes to denoise. Returns arrays and df def denoice_dataset(handler:Handler.CSV_handler, subject_nr, which_arm, emg_nr, round): - data_type = handler.data_type - container = handler.data_container_dict.get(subject_nr) - df = container.dict_list[round - 1].get(which_arm)[emg_nr] + print(df.head) N = get_xory_from_df('x', df) @@ -82,7 +80,8 @@ def denoice_dataset(handler:Handler.CSV_handler, subject_nr, which_arm, emg_nr, cA_filt, cD_filt = soft_threshold_filter(cA, cD) y_values = inverse_wavelet(df, cA_filt, cD_filt) - return pandas.DataFrame([N_trans, y_values]) + df_new = pandas.DataFrame([N_trans, y_values]) + return N, y_values, df_new