|
|
|
@ -1,15 +1,19 @@
|
|
|
|
|
import json
|
|
|
|
|
from python_speech_features.python_speech_features.base import mfcc
|
|
|
|
|
|
|
|
|
|
from keras import callbacks
|
|
|
|
|
from psf_lib.python_speech_features.python_speech_features.base import mfcc
|
|
|
|
|
import numpy as np
|
|
|
|
|
from sklearn.model_selection import train_test_split
|
|
|
|
|
import tensorflow as tf
|
|
|
|
|
import tensorflow.keras as keras
|
|
|
|
|
from keras import backend as K
|
|
|
|
|
from keras.regularizers import l2
|
|
|
|
|
from keras.callbacks import Callback, CSVLogger, ModelCheckpoint
|
|
|
|
|
from pathlib import Path
|
|
|
|
|
import pandas as pd
|
|
|
|
|
import matplotlib.pyplot as plt
|
|
|
|
|
import statistics
|
|
|
|
|
import csv
|
|
|
|
|
|
|
|
|
|
# Path to json file that stores MFCCs and subject labels for each processed sample
|
|
|
|
|
DATA_PATH_MFCC = str(Path.cwd()) + "/mfcc_data.json"
|
|
|
|
@ -158,12 +162,16 @@ def prepare_datasets_sessions(X, y, session_lengths, test_session_index=4, nr_su
|
|
|
|
|
# Trains the model
|
|
|
|
|
# Input: Keras.model, batch_size, nr epochs, training, and validation data
|
|
|
|
|
# Ouput: History
|
|
|
|
|
def train(model, X_train, y_train, verbose, batch_size=64, epochs=30, X_validation=None, y_validation=None):
|
|
|
|
|
def train( model, X_train, y_train, verbose, batch_size=64, epochs=30,
|
|
|
|
|
X_validation=None, y_validation=None):
|
|
|
|
|
|
|
|
|
|
optimiser = keras.optimizers.Adam(learning_rate=0.0001)
|
|
|
|
|
model.compile(optimizer=optimiser,
|
|
|
|
|
loss='categorical_crossentropy',
|
|
|
|
|
metrics=['accuracy'])
|
|
|
|
|
|
|
|
|
|
#csv_path = str(Path.cwd()) + '/logs/{}/{}_train_log.csv'.format(MODEL_NAME, MODEL_NAME)
|
|
|
|
|
#csv_logger = CSVLogger(csv_path, append=False)
|
|
|
|
|
|
|
|
|
|
if X_validation != None:
|
|
|
|
|
history = model.fit(X_train,
|
|
|
|
@ -233,11 +241,11 @@ def batch_formatting(X_train, X_test, y_train, y_test, batch_size=64, nr_classes
|
|
|
|
|
|
|
|
|
|
return X_train_batch, X_test_batch, y_train_batch, y_test_batch
|
|
|
|
|
|
|
|
|
|
# Retrieves data sets for each session as test set and evalutes
|
|
|
|
|
# Retrieves data sets for each session as test set and evalutes. DOES USE prediction_csv_logger as default
|
|
|
|
|
# the average of networks trained om them
|
|
|
|
|
# Input: raw data, session_lengths list, total nr of sessions, batch_size, and nr of epochs
|
|
|
|
|
# Ouput: tuple(cross validation average, list(result for each dataset(len=nr_sessions)))
|
|
|
|
|
def session_cross_validation(model_name:str, X, y, session_lengths, nr_sessions, batch_size=64, epochs=30):
|
|
|
|
|
def session_cross_validation(model_name:str, X, y, session_lengths, nr_sessions, log_to_csv=True, batch_size=64, epochs=30):
|
|
|
|
|
session_training_results = []
|
|
|
|
|
for i in range(nr_sessions):
|
|
|
|
|
|
|
|
|
@ -246,25 +254,29 @@ def session_cross_validation(model_name:str, X, y, session_lengths, nr_sessions,
|
|
|
|
|
# Model:
|
|
|
|
|
if model_name == 'LSTM':
|
|
|
|
|
model = LSTM(input_shape=(1, 208))
|
|
|
|
|
|
|
|
|
|
elif model_name == 'GRU':
|
|
|
|
|
model = GRU(input_shape=(1, 208))
|
|
|
|
|
elif model_name == 'CNN':
|
|
|
|
|
print(X_train_session.shape)
|
|
|
|
|
print(X_test_session.shape)
|
|
|
|
|
|
|
|
|
|
elif model_name == 'CNN_1D':
|
|
|
|
|
X_train_session = np.reshape(X_train_session, (X_train_session.shape[0], 208, 1))
|
|
|
|
|
X_test_session = np.reshape(X_test_session, (X_test_session.shape[0], 208, 1))
|
|
|
|
|
model = CNN(input_shape=(208, 1))
|
|
|
|
|
elif model_name == 'FNN':
|
|
|
|
|
model = CNN_1D(input_shape=(208, 1))
|
|
|
|
|
|
|
|
|
|
elif model_name == 'FFN':
|
|
|
|
|
model = FFN(input_shape=(1, 208))
|
|
|
|
|
|
|
|
|
|
else:
|
|
|
|
|
raise Exception('Model not found')
|
|
|
|
|
|
|
|
|
|
model.summary()
|
|
|
|
|
#model.summary()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
train(model, X_train_session, y_train_session, verbose=1, batch_size=batch_size, epochs=epochs)
|
|
|
|
|
test_loss, test_acc = model.evaluate(X_test_session, y_test_session, verbose=2)
|
|
|
|
|
session_training_results.append(test_acc)
|
|
|
|
|
if log_to_csv:
|
|
|
|
|
prediction_csv_logger(X_test_session, y_test_session, model_name, model, i)
|
|
|
|
|
del model
|
|
|
|
|
K.clear_session()
|
|
|
|
|
#print('Session', i, 'as test data gives accuracy:', test_acc)
|
|
|
|
@ -273,6 +285,22 @@ def session_cross_validation(model_name:str, X, y, session_lengths, nr_sessions,
|
|
|
|
|
|
|
|
|
|
return average_result, session_training_results
|
|
|
|
|
|
|
|
|
|
# Takes in test data and logs input data and the prediction from a model
|
|
|
|
|
# Input: raw data, session_lengths list, total nr of sessions, batch_size, and nr of epochs
|
|
|
|
|
# Ouput: tuple(cross validation average, list(result for each dataset(len=nr_sessions)))
|
|
|
|
|
def prediction_csv_logger(X, y, model_name, model, session_nr):
|
|
|
|
|
|
|
|
|
|
csv_path = str(Path.cwd()) + '/logs/{}/{}_session{}_log.csv'.format(model_name, model_name, session_nr+1)
|
|
|
|
|
|
|
|
|
|
layerOutput = model.predict(X, verbose=0)
|
|
|
|
|
|
|
|
|
|
with open(csv_path, 'w') as csv_file:
|
|
|
|
|
writer = csv.writer(csv_file)
|
|
|
|
|
writer.writerow(['input', 'prediction', 'solution'])
|
|
|
|
|
data = zip(X, layerOutput, y)
|
|
|
|
|
writer.writerows(data)
|
|
|
|
|
csv_file.close()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# ----- MODELS ------
|
|
|
|
|
|
|
|
|
@ -323,17 +351,13 @@ def FFN(input_shape, nr_classes=5):
|
|
|
|
|
# Creates a keras.model with focus on Convulotion layers
|
|
|
|
|
# Input: input shape, classes of classification
|
|
|
|
|
# Ouput: model:Keras.model
|
|
|
|
|
def CNN(input_shape, nr_classes=5):
|
|
|
|
|
def CNN_1D(input_shape, nr_classes=5):
|
|
|
|
|
|
|
|
|
|
model = keras.Sequential(name='CNN_model')
|
|
|
|
|
#model.add(keras.layers.Input(name='the_input', shape=input_shape, dtype='float32'))
|
|
|
|
|
model.add(keras.layers.Conv1D(32, kernel_size= 5, activation='relu', input_shape=input_shape)) # , input_shape=input_shape
|
|
|
|
|
model.add(keras.layers.Conv1D(32, kernel_size=5, activation='relu', input_shape=input_shape))
|
|
|
|
|
model.add(keras.layers.MaxPooling1D(pool_size=5))
|
|
|
|
|
#model.add(keras.layers.BatchNormalization())
|
|
|
|
|
|
|
|
|
|
model.add(keras.layers.Flatten())
|
|
|
|
|
#model.add(keras.layers.GlobalAveragePooling1D())
|
|
|
|
|
model.add(keras.layers.Dense(64, activation='relu')) # , input_shape=(...,1)
|
|
|
|
|
model.add(keras.layers.Dense(128, activation='relu'))
|
|
|
|
|
model.add(keras.layers.Dropout(0.3))
|
|
|
|
|
# Ouput layer
|
|
|
|
|
model.add(keras.layers.Dense(nr_classes, activation='softmax', name='Softmax'))
|
|
|
|
@ -353,10 +377,12 @@ if __name__ == "__main__":
|
|
|
|
|
NR_SUBJECTS = 5
|
|
|
|
|
NR_SESSIONS = 4
|
|
|
|
|
BATCH_SIZE = 64
|
|
|
|
|
EPOCHS = 30
|
|
|
|
|
EPOCHS = 5
|
|
|
|
|
|
|
|
|
|
TEST_SESSION_NR = 4
|
|
|
|
|
VERBOSE = 0
|
|
|
|
|
VERBOSE = 1
|
|
|
|
|
MODEL_NAME = 'CNN_1D'
|
|
|
|
|
LOG = True
|
|
|
|
|
|
|
|
|
|
# ----- Get prepared data: train, validation, and test ------
|
|
|
|
|
# X_train.shape = (2806-X_test, 1, 208)
|
|
|
|
@ -367,7 +393,7 @@ if __name__ == "__main__":
|
|
|
|
|
X_train, X_test, y_train, y_test = prepare_datasets_sessions(X, y, session_lengths, TEST_SESSION_NR)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#'''
|
|
|
|
|
'''
|
|
|
|
|
# ----- Make model ------
|
|
|
|
|
#model_GRU = GRU(input_shape=(1, 208)) # (timestep, 13*16 MFCC coefficients)
|
|
|
|
|
#model_LSTM = LSTM(input_shape=(1, 208)) # (timestep, 13*16 MFCC coefficients)
|
|
|
|
@ -381,33 +407,53 @@ if __name__ == "__main__":
|
|
|
|
|
# ----- Train network ------
|
|
|
|
|
#history_GRU = train(model_GRU, X_train, y_train, verbose=VERBOSE, batch_size=BATCH_SIZE, epochs=EPOCHS)
|
|
|
|
|
#history_LSTM = train(model_LSTM, X_train, y_train, verbose=VERBOSE, batch_size=BATCH_SIZE, epochs=EPOCHS)
|
|
|
|
|
history_CNN_1D = train(model_CNN_1D, np.reshape(X_train, (X_train.shape[0], 208, 1)), y_train, verbose=VERBOSE, batch_size=BATCH_SIZE, epochs=EPOCHS)
|
|
|
|
|
history_CNN_1D = train( model_CNN_1D, np.reshape(X_train, (X_train.shape[0], 208, 1)),
|
|
|
|
|
y_train, verbose=VERBOSE, batch_size=BATCH_SIZE, epochs=EPOCHS)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# ----- Plot train accuracy/error -----
|
|
|
|
|
#plot_train_history(history)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# ----- Evaluate model on test set ------
|
|
|
|
|
|
|
|
|
|
#test_loss, test_acc = model_GRU.evaluate(X_test, y_test, verbose=VERBOSE)
|
|
|
|
|
#print('\nTest accuracy GRU:', test_acc, '\n')
|
|
|
|
|
#test_loss, test_acc = model_LSTM.evaluate(X_test, y_test, verbose=VERBOSE)
|
|
|
|
|
#print('\nTest accuracy LSTM:', test_acc, '\n')
|
|
|
|
|
test_loss, test_acc = model_CNN_1D.evaluate(np.reshape(X_test, (X_test.shape[0], 208, 1)), y_test, verbose=VERBOSE)
|
|
|
|
|
test_loss, test_acc = model_CNN_1D.evaluate(np.reshape(X_test, (X_test.shape[0], 208, 1)), y_test, verbose=0)
|
|
|
|
|
print('\nTest accuracy CNN_1D:', test_acc, '\n')
|
|
|
|
|
#'''
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# ----- Store test predictions in CSV ------
|
|
|
|
|
prediction_csv_logger(np.reshape(X_test, (X_test.shape[0], 208, 1)), y_test, MODEL_NAME, model_CNN_1D, TEST_SESSION_NR)
|
|
|
|
|
'''
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#'''
|
|
|
|
|
# ----- Cross validation ------
|
|
|
|
|
#average_GRU = session_cross_validation('GRU', X, y, session_lengths, NR_SESSIONS, BATCH_SIZE, EPOCHS)
|
|
|
|
|
#verage_LSTM = session_cross_validation('LSTM', X, y, session_lengths, NR_SESSIONS, BATCH_SIZE, EPOCHS)
|
|
|
|
|
#average_FFN = session_cross_validation('FNN', X, y, session_lengths, NR_SESSIONS, BATCH_SIZE, EPOCHS)
|
|
|
|
|
average_CNN = session_cross_validation('CNN', X, y, session_lengths, NR_SESSIONS, BATCH_SIZE, EPOCHS)
|
|
|
|
|
average_GRU = session_cross_validation('GRU', X, y, session_lengths, nr_sessions=NR_SESSIONS,
|
|
|
|
|
log_to_csv=LOG,
|
|
|
|
|
batch_size=BATCH_SIZE,
|
|
|
|
|
epochs=EPOCHS)
|
|
|
|
|
average_LSTM = session_cross_validation('LSTM', X, y, session_lengths, nr_sessions=NR_SESSIONS,
|
|
|
|
|
log_to_csv=LOG,
|
|
|
|
|
batch_size=BATCH_SIZE,
|
|
|
|
|
epochs=EPOCHS)
|
|
|
|
|
average_FFN = session_cross_validation('FFN', X, y, session_lengths, nr_sessions=NR_SESSIONS,
|
|
|
|
|
log_to_csv=LOG,
|
|
|
|
|
batch_size=BATCH_SIZE,
|
|
|
|
|
epochs=EPOCHS)
|
|
|
|
|
average_CNN = session_cross_validation('CNN_1D', X, y, session_lengths, nr_sessions=NR_SESSIONS,
|
|
|
|
|
log_to_csv=LOG,
|
|
|
|
|
batch_size=BATCH_SIZE,
|
|
|
|
|
epochs=EPOCHS)
|
|
|
|
|
|
|
|
|
|
print('\n')
|
|
|
|
|
#print('Crossvalidated GRU:', average_GRU)
|
|
|
|
|
#print('Crossvalidated LSTM:', average_LSTM)
|
|
|
|
|
#print('Crossvalidated FFN:', average_FFN)
|
|
|
|
|
print('Cross-validated CNN:', average_CNN)
|
|
|
|
|
print('Crossvalidated GRU:', average_GRU)
|
|
|
|
|
print('Crossvalidated LSTM:', average_LSTM)
|
|
|
|
|
print('Crossvalidated FFN:', average_FFN)
|
|
|
|
|
print('Cross-validated CNN_1D:', average_CNN)
|
|
|
|
|
print('\n')
|
|
|
|
|
'''
|
|
|
|
|
#'''
|
|
|
|
|
|
|
|
|
|