fix: try to implement the NN correctly

This commit is contained in:
Skudalen 2021-07-05 12:43:45 +02:00
parent 91bd13ee1d
commit 155816235e
12 changed files with 1310 additions and 1190 deletions

8
.idea/.gitignore vendored Normal file
View File

@ -0,0 +1,8 @@
# Default ignored files
/shelf/
/workspace.xml
# Datasource local storage ignored files
/dataSources/
/dataSources.local.xml
# Editor-based HTTP Client requests
/httpRequests/

8
.idea/Slovakia 2021.iml Normal file
View File

@ -0,0 +1,8 @@
<?xml version="1.0" encoding="UTF-8"?>
<module type="PYTHON_MODULE" version="4">
<component name="NewModuleRootManager">
<content url="file://$MODULE_DIR$" />
<orderEntry type="inheritedJdk" />
<orderEntry type="sourceFolder" forTests="false" />
</component>
</module>

4
.idea/encodings.xml Normal file
View File

@ -0,0 +1,4 @@
<?xml version="1.0" encoding="UTF-8"?>
<project version="4">
<component name="Encoding" addBOMForNewFiles="with NO BOM" />
</project>

View File

@ -0,0 +1,6 @@
<component name="InspectionProjectProfileManager">
<settings>
<option name="USE_PROJECT_PROFILE" value="false" />
<version value="1.0" />
</settings>
</component>

4
.idea/misc.xml Normal file
View File

@ -0,0 +1,4 @@
<?xml version="1.0" encoding="UTF-8"?>
<project version="4">
<component name="ProjectRootManager" version="2" project-jdk-name="Python 3.6 (Slovakia 2021)" project-jdk-type="Python SDK" />
</project>

8
.idea/modules.xml Normal file
View File

@ -0,0 +1,8 @@
<?xml version="1.0" encoding="UTF-8"?>
<project version="4">
<component name="ProjectModuleManager">
<modules>
<module fileurl="file://$PROJECT_DIR$/.idea/Slovakia 2021.iml" filepath="$PROJECT_DIR$/.idea/Slovakia 2021.iml" />
</modules>
</component>
</project>

6
.idea/other.xml Normal file
View File

@ -0,0 +1,6 @@
<?xml version="1.0" encoding="UTF-8"?>
<project version="4">
<component name="PySciProjectComponent">
<option name="PY_SCI_VIEW_SUGGESTED" value="true" />
</component>
</project>

7
.idea/vcs.xml Normal file
View File

@ -0,0 +1,7 @@
<?xml version="1.0" encoding="UTF-8"?>
<project version="4">
<component name="VcsDirectoryMappings">
<mapping directory="$PROJECT_DIR$" vcs="Git" />
<mapping directory="$PROJECT_DIR$/python_speech_features" vcs="Git" />
</component>
</project>

View File

@ -610,15 +610,10 @@ class DL_data_handler:
test_df_for_bugs(signal, key, i) test_df_for_bugs(signal, key, i)
# extract mfcc # extract mfcc
#n_fft = MFCC_WINDOWSIZE * sample_rate
#hop_length = MFCC_STEPSIZE * sample_rate
#mfcc = librosa.feature.mfcc(signal, sample_rate, n_mfcc=NR_COEFFICIENTS, n_fft=n_fft, hop_length=hop_length)
mfcc = mfcc_custom(signal, sample_rate, MFCC_WINDOWSIZE, MFCC_STEPSIZE, NR_COEFFICIENTS, NR_MEL_BINS) mfcc = mfcc_custom(signal, sample_rate, MFCC_WINDOWSIZE, MFCC_STEPSIZE, NR_COEFFICIENTS, NR_MEL_BINS)
mfcc = mfcc.T mfcc = mfcc.T
#print(len(mfcc))
# store only mfcc feature with expected number of vectors
#if len(mfcc) == num_mfcc_vectors_per_segment:
data["mfcc"].append(mfcc.tolist()) data["mfcc"].append(mfcc.tolist())
data["labels"].append(key) data["labels"].append(key)
print("sample:{}".format(i+1)) print("sample:{}".format(i+1))

View File

@ -1,12 +1,14 @@
import json import json
import numpy as np import numpy as np
from sklearn.model_selection import train_test_split from sklearn.model_selection import train_test_split
import tensorflow.keras as keras
import tensorflow as tf import tensorflow as tf
import tf.keras as keras
from pathlib import Path from pathlib import Path
import pandas as pd
import matplotlib.pyplot as plt
# path to json file that stores MFCCs and genre labels for each processed segment # path to json file that stores MFCCs and subject labels for each processed sample
DATA_PATH = str(Path.cwd()) + "mfcc_data.json" DATA_PATH = str(Path.cwd()) + "/mfcc_data.json"
def load_data(data_path): def load_data(data_path):
@ -16,38 +18,102 @@ def load_data(data_path):
# convert lists to numpy arrays # convert lists to numpy arrays
X = np.array(data["mfcc"]) X = np.array(data["mfcc"])
y = np.array(data["labels"]) y = np.array(data["labels"])
#X = np.asarray(X).astype('float32')
#y = np.asarray(y).astype('float32')
#y = tf.expand_dims(y, axis=1)
print("Data succesfully loaded!") print("Data succesfully loaded!")
return X, y return X, y
def plot_history(history):
"""Plots accuracy/loss for training/validation set as a function of the epochs
:param history: Training history of model
:return:
"""
fig, axs = plt.subplots(2)
# create accuracy sublpot
axs[0].plot(history.history["accuracy"], label="train accuracy")
axs[0].plot(history.history["val_accuracy"], label="test accuracy")
axs[0].set_ylabel("Accuracy")
axs[0].legend(loc="lower right")
axs[0].set_title("Accuracy eval")
# create error sublpot
axs[1].plot(history.history["loss"], label="train error")
axs[1].plot(history.history["val_loss"], label="test error")
axs[1].set_ylabel("Error")
axs[1].set_xlabel("Epoch")
axs[1].legend(loc="upper right")
axs[1].set_title("Error eval")
plt.show()
if __name__ == "__main__": def prepare_datasets(test_size=0.25, validation_size=0.2):
"""Loads data and splits it into train, validation and test sets.
:param test_size (float): Value in [0, 1] indicating percentage of data set to allocate to test split
:param validation_size (float): Value in [0, 1] indicating percentage of train set to allocate to validation split
:return X_train (ndarray): Input training set
:return X_validation (ndarray): Input validation set
:return X_test (ndarray): Input test set
:return y_train (ndarray): Target training set
:return y_validation (ndarray): Target validation set
:return y_test (ndarray): Target test set
"""
# load data # load data
X, y = load_data(DATA_PATH) X, y = load_data(DATA_PATH)
# create train/test split # create train, validation and test split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=test_size)
X_train, X_validation, y_train, y_validation = train_test_split(X_train, y_train, test_size=validation_size)
return X_train, X_validation, X_test, y_train, y_validation, y_test
def build_model(input_shape, nr_classes=5):
"""Generates RNN-LSTM model
:param input_shape (tuple): Shape of input set
:return model: RNN-LSTM model
"""
# build network topology # build network topology
model = keras.Sequential([ model = keras.Sequential()
# input layer # 2 LSTM layers
keras.layers.Flatten(input_shape=(X.shape[1], X.shape[2])), model.add(keras.layers.LSTM(64, input_shape=input_shape, return_sequences=True))
model.add(keras.layers.LSTM(64))
# 1st dense layer # dense layer
keras.layers.Dense(512, activation='relu'), model.add(keras.layers.Dense(64, activation='relu'))
model.add(keras.layers.Dropout(0.3))
# 2nd dense layer # output layer
keras.layers.Dense(256, activation='relu'), model.add(keras.layers.Dense(nr_classes, activation='softmax'))
# 3rd dense layer return model
keras.layers.Dense(64, activation='relu'),
# output layer
keras.layers.Dense(10, activation='softmax') if __name__ == "__main__":
])
# get train, validation, test splits
X_train, X_validation, X_test, y_train, y_validation, y_test = prepare_datasets(0.25, 0.2)
# create network
print(X_train.shape)
X_train = np.reshape(X_train, (X_train.shape[0], 1, X_train.shape[1]))
X_test = np.reshape(X_test, (X_test.shape[0], 1, X_test.shape[1]))
#X_validation = np.reshape(X_validation, (X_test.shape[0], 1, X_test.shape[1]))
print(X_train.shape)
print(X_train.shape[0])
print(X_train.shape[1])
input_shape = (X_train.shape[1], X_train.shape[2]) # 300, 13
model = build_model(input_shape)
# compile model # compile model
optimiser = keras.optimizers.Adam(learning_rate=0.0001) optimiser = keras.optimizers.Adam(learning_rate=0.0001)
@ -58,4 +124,12 @@ if __name__ == "__main__":
model.summary() model.summary()
# train model # train model
history = model.fit(X_train, y_train, validation_data=(X_test, y_test), batch_size=32, epochs=50) history = model.fit(X_train, y_train, validation_data=(X_validation, y_validation), batch_size=16, epochs=30)
# plot accuracy/error for training and validation
plot_history(history)
# evaluate model on test set
test_loss, test_acc = model.evaluate(X_test, y_test, verbose=2)
print('\nTest accuracy:', test_acc)

File diff suppressed because it is too large Load Diff