chore: add more info to README
This commit is contained in:
parent
9c030fa2dc
commit
060507bc78
@ -486,8 +486,8 @@ class CSV_handler:
|
||||
samplerate = get_samplerate(data_frame)
|
||||
return data_frame, samplerate
|
||||
|
||||
|
||||
'''
|
||||
# NOT IMPLEMENTED
|
||||
'''
|
||||
def get_keyboard_data(self, filename:str, pres_or_release:str='pressed'):
|
||||
filepath = self.working_dir + str(filename)
|
||||
df = pd.read_csv(filepath)
|
||||
@ -496,7 +496,7 @@ class CSV_handler:
|
||||
else
|
||||
'''
|
||||
|
||||
class DL_data_handler:
|
||||
class NN_handler:
|
||||
|
||||
JSON_PATH_REG = "reg_data.json"
|
||||
JSON_PATH_MFCC = "mfcc_data.json"
|
||||
|
@ -220,9 +220,9 @@ def main():
|
||||
|
||||
csv_handler = CSV_handler()
|
||||
csv_handler.load_data('soft')
|
||||
dl_data_handler = DL_data_handler(csv_handler)
|
||||
dl_data_handler.store_mfcc_samples()
|
||||
dl_data_handler.save_json_mfcc()
|
||||
nn_handler = NN_handler(csv_handler)
|
||||
nn_handler.store_mfcc_samples()
|
||||
nn_handler.save_json_mfcc()
|
||||
|
||||
'''
|
||||
dict = dl_data_handler.get_mfcc_samples_dict()
|
||||
|
39
README.md
39
README.md
@ -1,17 +1,32 @@
|
||||
# Analysis of Keystroke EMG data for identification
|
||||
|
||||
###### EMG data handling and Neural Network analysis
|
||||
Scripts to handle CSV files composed by 2 * 8 EMG sensors(left & right) devided into sessions per subject. The raw data is organised in a CSV_handler object with Handle_emg_data.py. Processing of data can take the further form of:
|
||||
* Preprocessing with Signal_prep.py - FFT, MFCC, Wavelet db4
|
||||
* Storage for Neural Network analysis with DL_handler(Handle_emg_data.py) - combined EMG DataFrame, combined MFCCs DataFrame
|
||||
* Neural Network analysis in Neural_Network_Analysis.py - LSTM NN, etc.
|
||||
#### EMG data handling and Neural Network analysis
|
||||
Scripts to handle CSV files composed by 2 * 8 EMG sensors(left & right) devided into sessions per subject. The raw data is organised in a CSV_handler object with Handle_emg_data.py. Processing of data can take the further form of:
|
||||
* Preprocessing with Signal_prep.py - FFT, MFCC, Wavelet db4
|
||||
* Storage for Neural Network analysis with NN_handler(Handle_emg_data.py) - combined EMG DataFrame, combined MFCCs DataFrame
|
||||
* Neural Network analysis in Neural_Network_Analysis.py - LSTM NN, etc.
|
||||
|
||||
###### Technologies used
|
||||
* Common libs: Numpy, Pandas, Pathlib, Sklearn, Scipy, Matplotlib, Tensorflow, Keras
|
||||
* Indi libs: Python_speech_features, Pywt
|
||||
#### Technologies used
|
||||
* Common libs: Numpy, Pandas, Pathlib, Sklearn, Scipy, Matplotlib, Tensorflow, Keras
|
||||
* Community libs: Python_speech_features, Pywt
|
||||
|
||||
###### Challanges in the module
|
||||
* The CSV handlig is for the moment hard-coded to fit the current project due to a very specific file structure and respective naming convention.
|
||||
* Preprocessing is still limited in Signal_prep.py
|
||||
* Neural_Network_Analysis.py lacks a more general way to access multiple types of networks
|
||||
#### Challanges in the module
|
||||
* The CSV handlig is for the moment hard-coded to fit the current project due to a very specific file structure and respective naming convention.
|
||||
* Preprocessing is still limited in Signal_prep.py
|
||||
* Neural_Network_Analysis.py lacks a more general way to access multiple types of networks
|
||||
|
||||
#### Credits for insporational code
|
||||
|
||||
* Kapre - Keunwoochoi
|
||||
* Audio-Classification: seth814
|
||||
* DeepLearningForAudioWithPyhton - musikalkemist
|
||||
|
||||
## Table of Contents
|
||||
|
||||
| File and classes | Description and help functions |
|
||||
|-----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
||||
| Handle_emg_data.py: - Data_container - CSV_handler - NN_handler | Handles, manipulates, and stores data for analysis. - Data_container is a class that describes the data for each subject in the experiment. Use __init__. - CSV_handler takes data from CSV files and places it in Data_container for each subject. Use load_data() to load csv data into data containers and add the containers to the CSV_handler's 'data_container_dict', indexed by subject number. Use get_data() to retrieve specific data. - NN_handler prepares data for further analysis in Neural Networks. This class has storage for this data and/or can save it to a json file. |
|
||||
| Signal_prep.py | |
|
||||
| Present_data.py | |
|
||||
| Neural_Network_Analysis.py | |
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user