59 lines
1.4 KiB
Matlab
59 lines
1.4 KiB
Matlab
clc
|
|
clear all
|
|
close all
|
|
%%
|
|
[datanum,datatxt_final,dataraw]=xlsread('labeled_data.csv');
|
|
datatxt=datatxt_final(2:end,6);
|
|
no_of_data_to_process=1000;
|
|
txtdataout=datatxt(1:no_of_data_to_process);
|
|
classdata=datanum(1:no_of_data_to_process,6);
|
|
neitherloc=find(classdata==2);
|
|
offensiveloc=find(classdata==1);
|
|
hateloc=find(classdata==0);
|
|
txtdataout=string(txtdataout);
|
|
traindata_doc=textpreprocessing(txtdataout);
|
|
encode_word=wordEncoding(traindata_doc);
|
|
seq_maxleen=10;
|
|
traindata=doc2sequence(encode_word,traindata_doc,'Length',seq_maxleen);
|
|
testdata=doc2sequence(encode_word,traindata_doc,'Length',seq_maxleen);
|
|
trainclass=categorical(classdata+1);
|
|
numofdata=length(trainclass);
|
|
networkiter=5;
|
|
datapass{1}=traindata;
|
|
datapass{2}=trainclass;
|
|
datapass{3}=testdata;
|
|
datapass{5}=numofdata;
|
|
datapass{6}=encode_word;
|
|
datapass{21}=0;
|
|
datapass{22}=networkiter;
|
|
pop_size=2;
|
|
no_of_iter=10;
|
|
[conver_result,Final_result,all_result]=horseherd_process(datapass,pop_size,no_of_iter);
|
|
tardata=all_result{3};resdata=all_result{4};
|
|
figure,chadata=confusionchart(all_result{2},{'Hate speech','offensive' , 'neither'});
|
|
chadata.Title='Horse Herd optimization Algorithm';
|
|
chadata.RowSummary = 'row-normalized';
|
|
chadata.ColumnSummary = 'column-normalized';
|
|
|
|
figure,plot(conver_result,'r-s','linewidth',2);
|
|
grid on;xlabel('iteration');ylabel('Accuracy');
|
|
title('Convergence graph for Horse Herd optimization Algorithm');
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|