clc clear all close all %% [datanum,datatxt_final,dataraw]=xlsread('labeled_data.csv'); datatxt=datatxt_final(2:end,6); no_of_data_to_process=1000; txtdataout=datatxt(1:no_of_data_to_process); classdata=datanum(1:no_of_data_to_process,6); neitherloc=find(classdata==2); offensiveloc=find(classdata==1); hateloc=find(classdata==0); txtdataout=string(txtdataout); traindata_doc=textpreprocessing(txtdataout); encode_word=wordEncoding(traindata_doc); seq_maxleen=10; traindata=doc2sequence(encode_word,traindata_doc,'Length',seq_maxleen); testdata=doc2sequence(encode_word,traindata_doc,'Length',seq_maxleen); trainclass=categorical(classdata+1); numofdata=length(trainclass); networkiter=5; datapass{1}=traindata; datapass{2}=trainclass; datapass{3}=testdata; datapass{5}=numofdata; datapass{6}=encode_word; datapass{21}=0; datapass{22}=networkiter; pop_size=2; no_of_iter=10; [conver_result,Final_result,all_result]=horseherd_process(datapass,pop_size,no_of_iter); tardata=all_result{3};resdata=all_result{4}; figure,chadata=confusionchart(all_result{2},{'Hate speech','offensive' , 'neither'}); chadata.Title='Horse Herd optimization Algorithm'; chadata.RowSummary = 'row-normalized'; chadata.ColumnSummary = 'column-normalized'; figure,plot(conver_result,'r-s','linewidth',2); grid on;xlabel('iteration');ylabel('Accuracy'); title('Convergence graph for Horse Herd optimization Algorithm');