zpwiki/pages/students/2016/patrik_pavlisin/dp22/README.md

124 lines
14 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

**Attention, The Transformer**
**Úvod**
Rekurentné neurónové siete, najmä long short-term pamäť (LSMT, špeciálny druh RNN, vytvorený na riešenie problémov s miznúcim gradientom) a uzavreté rekurentné neurónové siete, boli pevne zavedené ako najmodernejšie prístupy k problémom sekvenčného modelovania a prenosov, ako je jazykové modelovanie a strojový preklad. Početné snahy odvtedy pokračujú v posúvaní hraníc rekurentných jazykových modelov a architektúr encoder-decoder. Sieťové pamäte typu end-to-end sú založené na RNN (Recurrent Neural Network) mechanizme namiesto opakovania zarovnaného podľa sekvencie a ukázalo sa, že fungujú dobre pri úlohách zodpovedajúcich otázky v jednoduchom jazyku a pri modelovaní jazykov. End-to-end učenie je typ Deep Learningu, v ktorom sú všetky parametre trénované spoločne, a nie krok za krokom.
RNN boli dlhodobo dominantnou voľbou pre sekvenčné modelovanie, závažne však trpia najme dvoma problémami. Po prvé, ľahko trpí problémami s miznutím a explodovaním gradientu, čo do značnej miery obmedzuje schopnosť naučiť sa veľmi dlhodobé závislosti. Po druhé, sekvenčná povaha prechodov dopredu aj dozadu veľmi sťažuje, ak nie priam znemožňuje, paralelizáciu výpočtu, čo dramaticky zvyšuje časovú zložitosť v tréningovom aj testovacom postupe. Preto mnohé nedávno vyvinuté modely sekvenčného učenia úplne vypustili rekurentnú štruktúru a spoliehajú sa iba na konvolučnú (Convolution Neural Network) alebo mechanizmus pozornosti, ktoré sa dajú ľahko paralelizovať a umožňujú tok informácií v ľubovoľnej dĺžke. Dva reprezentatívne modely, ktoré pritiahli veľkú pozornosť, sú Temporal Convolution Networks (TCN) a Transformer. V rôznych úlohách sekvenčného učenia preukázali porovnateľný alebo dokonca lepší výkon ako výkonnosť RNN.
Transformer je modelová architektúra, ktorá sa vyhýba opakovaniu a namiesto toho sa úplne spolieha na mechanizmus pozornosti na kreslenie globálnych závislostí medzi vstupom a výstupom. Je to prvý transdukčný model, ktorý sa spolieha úplne na vlastnú pozornosť pri výpočte reprezentácii vstupu a výstupu bez použitia RNN (Recurrent Neural Network) alebo CNN (Convolution Neural Network). Používa sa predovšetkým v oblasti NLP (Natural Language Processing) a CV (Computer Vision). Mechanizmy pozornosti sa stali súčasťou presvedčivého modelovania sekvencií a prenosových modelov v rôznych úlohách, ktoré umožňujú modelovanie závislostí bez ohľadu na ich vzdialenosť vo vstupných alebo výstupných sekvenciách. Takmer vo všetkých prípadoch sa však takéto mechanizmy pozornosti používajú v spojení s rekurentnou sieťou.
Najmä Multi-head attention mechanizmus v Transformeri umožňuje, aby bola každá pozícia priamo spojená s akýmikoľvek inými pozíciami v sekvencii. Informácie tak môžu prúdiť cez pozície bez akejkoľvek medzistraty. Napriek tomu existujú dva problémy, ktoré môžu poškodiť účinnosť Multi-head attention pri sekvenčnom učení. Prvý pochádza zo straty sekvenčných informácií o pozíciách, pretože s každou pozíciou zaobchádza rovnako. Na zmiernenie tohto problému Transformer zavádza vkladanie pozícií, ktorých účinky sa však ukázali ako obmedzené.
**Modelová architektúra**
Väčšina konkurenčných prenosových modelov neurónovej sekvencie má štruktúru encoder-decoder. V tomto prípade encoder mapuje vstupnú sekvenciu symbolových reprezentácií (x1, ..., xn) na sekvenciu spojitých reprezentácií z = (z1, ..., zn). Vzhľadom na z, decoder potom generuje výstupnú sekvenciu (y1, ..., ym) symbolov jeden po druhom. V každom kroku je model automaticky regresívny a pri generovaní ďalšieho spotrebuje predtým vygenerované symboly ako ďalší vstup.
**Pozornosť**
Funkciu pozornosti je možné opísať ako mapovanie dotazu a sady párov kľúčov a hodnôt na výstup, kde dotaz, kľúče, hodnoty a výstup sú všetko vektory. Výstup sa vypočíta ako vážený súčet hodnôt, pričom hmotnosť priradená každej hodnote sa vypočíta pomocou funkcie kompatibility dotazu so zodpovedajúcim kľúčom.
|![](https://git.kemt.fei.tuke.sk/KEMT/zpwiki/raw/branch/master/pages/students/2016/patrik_pavlisin/dp22/Modelov%c3%a1%20architekt%c3%bara%20Transformer.png)|
|:--:|
|Obr 1. Modelová architektúra Transformer|
**Encoder-Decoder architektúra**
Rovnako ako predchádzajúce modely, Transformer používa architektúru encoder-decoder. Encoder-Decoder architektúra je spôsob použitia rekurentných neurónových sietí na problémy s predikciou sekvencie k sekvencii. Pôvodne bol vyvinutý pre problémy so strojovým prekladom, aj keď sa osvedčil pri súvisiacich problémoch s predikciou sekvencie k sekvencii, ako je zhrnutie textu a zodpovedanie otázok. Skladá sa z 3 častí (encoder, intermediate vector a decoder).
Encoder prijme jeden prvok vstupnej sekvencie v každom časovom kroku, spracuje ho, zhromaždí informácie o danom prvku a šíri ho ďalej.
Intermediate vector konečný vnútorný stav vytvorený z časti encoder modelu. Obsahuje informácie o celej vstupnej sekvencii, ktoré pomôžu decoderu robiť presné predpovede.
Decoder predpovedá výstup v každom časovom kroku.
Encoder pozostáva z kódovacích vrstiev, ktoré spracovávajú vstup iteračne jednu vrstvu za druhou, zatiaľ čo decoder pozostáva z dekódovacích vrstiev, ktoré robia to isté s výstupom encodera. Funkciou každej vrstvy encodera je generovať kódovanie, ktoré obsahuje informácie o tom, ktoré časti vstupov sú navzájom relevantné. Odošle svoje kódovanie do ďalšej vrstvy encodera ako vstupy. Každá decoderová vrstva robí opak, pričom použije všetky kódovania a na začlenenie výstupnej sekvencie použije svoje začlenené kontextové informácie. Aby sa to dosiahlo, každá vrstva encodera a decodera využíva mechanizmus pozornosti.
Pri každom vstupe pozornosť zvažuje relevanciu každého ďalšieho vstupu a čerpá z neho pri vytváraní výstupu. Každá decoderová vrstva má mechanizmus dodatočnej pozornosti, ktorý čerpá informácie z výstupov predchádzajúcich decoderov, než vrstva decodera čerpá informácie z kódovaní.
Obe vrstvy encodera a decodera majú feed-forward neurónovú sieť (umelá neurónová sieť, v ktorej spojenia medzi uzlami netvoria cyklus) na dodatočné spracovanie výstupov a obsahujú zvyškové spojenia a kroky na normalizácie vrstiev.
|![](https://git.kemt.fei.tuke.sk/KEMT/zpwiki/raw/branch/master/pages/students/2016/patrik_pavlisin/dp22/%c5%a0trukt%c3%bara%20modelu%20sequence%20to%20sequence.png)|
|:--:|
|Obr 2. Štruktúra modelu sequence to sequence (encoder-decoder)|
**Transformer Encoder**
Encoder sa skladá zo zásobníka _N = 6_ rovnakých vrstiev. Každá vrstva má dve podvrstvy. Prvým je Multi-head Self-attention mechanizmus a druhým je jednoduchá polohovo plne prepojená sieť spätnej väzby. Multi-head attention je modul pre mechanizmy pozornosti, ktorý prechádza mechanizmom pozornosti niekoľkokrát paralelne. Self-attention, tiež známy ako Intra-attention, je mechanizmus pozornosti, ktorý spája rôzne polohy jednej sekvencie s cieľom vypočítať reprezentáciu tej istej sekvencie. Okolo každej z dvoch čiastkových vrstiev sa používa zvyškové spojenie, po ktorom nasleduje normalizácia vrstvy. To znamená, že výstupom každej podvrstvy je _LayerNorm (x + Sublayer (x))_, kde _Sublayer (x)_ je funkcia implementovaná samotnou podvrstvou. Aby sa uľahčili tieto zvyškové spojenia, všetky podvrstvy v modeli, ako aj vkladacie vrstvy, produkujú výstupy dimenzie _dmodel_ = 512.
**Transformer Decoder**
Decoder je tiež zložený zo zásobníka _N = 6_ rovnakých vrstiev. Okrem dvoch podvrstiev v každej vrstve encodera, decoder vkladá tretiu podvrstvu, ktorá vykonáva Multi-head attention nad výstupom encoder zásobníka. Podobne ako encoder, používa zvyškové spojenia okolo každej z podvrstiev, po ktorých nasleduje normalizácia vrstvy. Toto maskovanie v kombinácii so skutočnosťou, že vloženia výstupov sú posunuté o jednu pozíciu, zaisťuje, že predpovede pre polohu _i_ môžu závisieť iba od známych výstupov v polohách menších ako _i_.
**Scaled Dot-Product Attention**
Našu osobitnú pozornosť nazývame „Pozornosť zameraná na produkt“ (obrázok 2). Vstup pozostáva z dotazov a kľúčov dimenzie _dk_ a hodnôt dimenzie _dv_. Bodové produkty dotazu vypočítame všetkými klávesmi, každý vydelíme √_dk_ a použijeme funkciu _softmax_, aby sme získali váhy hodnôt.
|![](https://git.kemt.fei.tuke.sk/KEMT/zpwiki/raw/branch/master/pages/students/2016/patrik_pavlisin/dp22/Scaled%20Dot-Production%20Attention.png)|
|:--:|
|Obr 3. Scaled Dot-Production Attention|
V praxi počítame funkciu pozornosti pre množinu dotazov súčasne zabalených do matice _Q_. Kľúče a hodnoty sú tiež zabalené spolu do matíc _K_ a _V_. Maticu výstupov vypočítame ako:
|![](https://git.kemt.fei.tuke.sk/KEMT/zpwiki/raw/branch/master/pages/students/2016/patrik_pavlisin/dp22/rovnica%201.png)|
|:--:|
Dve najčastejšie používané funkcie pozornosti sú additive attention a dot-product attention. Dot-product attention je identická s naším algoritmom, s výnimkou faktora mierky 1/$\sqrt{dk}$. Additive attention počíta funkciu kompatibility pomocou siete spätnej väzby s jednou skrytou vrstvou. Aj keď sú tieto dva teoreticky náročné, dot-product attention je v praxi oveľa rýchlejšia a priestorovo efektívnejšia, pretože je možné ich implementovať pomocou vysoko optimalizovaného maticového multiplikačného kódu.
Zatiaľ čo pri malých hodnotách dk tieto dva mechanizmy fungujú podobne, additive attention prevyšuje pozornosť produktu bez toho, aby sa škálovala pri väčších hodnotách _dk_. Je pravdepodobné, že pri veľkých hodnotách _dk_ sa bodové produkty zväčšujú a tlačia funkciu _softmax_ do oblastí, kde má extrémne malé gradienty (v strojovom učení je gradient derivátom funkcie, ktorá má viac ako jednu vstupnú premennú). Aby sa tomuto efektu zabránilo, škálujeme bodové produkty o 1/$\sqrt{dk}$
Multi-Head Attention
Namiesto toho, aby sme vykonávali funkciu jedinej pozornosti s _dmodel_-dimenzionálnymi kľúčmi, hodnotami a dotazmi, považuje sa za výhodné lineárne premietať dotazy, kľúče a hodnoty _h_-krát s rôznymi, naučenými lineárnymi projekciami do dimenzií _dk_, _dk_ a _dv_. Na každej z týchto predpokladaných verzií dotazov, kľúčov a hodnôt potom paralelne vykonávame funkciu pozornosti, čím sme získali _dv_-dimenzionálne výstupné hodnoty. Tieto sú zreťazené a znova premietnuté, výsledkom sú konečné hodnoty (obrázok 4).
|![](https://git.kemt.fei.tuke.sk/KEMT/zpwiki/raw/branch/master/pages/students/2016/patrik_pavlisin/dp22/Multi-Head%20Attention.png)|
|:--:|
|Obr 4. Multi-Head Attention|
Multi-head attention umožňuje modelu spoločne sa zaoberať informáciami z rôznych reprezentačných podpriestorov na rôznych pozíciách. Pri použití single-head attention to priemerovanie bráni.
|![](https://git.kemt.fei.tuke.sk/KEMT/zpwiki/raw/branch/master/pages/students/2016/patrik_pavlisin/dp22/rovnica%202.png)|
|:--:|
|![](https://git.kemt.fei.tuke.sk/KEMT/zpwiki/raw/branch/master/pages/students/2016/patrik_pavlisin/dp22/Screenshot_1.png)|
|:--:|
|Obr 5. matice parametrov|
V tomto prípade si za _h_ dosadíme 8 paralelných vrstiev pozornosti, alebo „heads“. Pre každý z nich používame _dk_ = _dv_ = _dmodel/h_ = _64_. Vzhľadom na zmenšený rozmer každej hlavy sú celkové výpočtové náklady podobné nákladom na pozornosť single-head s plnou dimenzionalitou (koľko atribútov má množina údajov).
The Transformer využíva Multi-head attention tromi rôznymi spôsobmi:
Vo vrstvách „encoder-decoder attention“ pochádzajú dotazy z predchádzajúcej vrstvy decodera a pamäťové kľúče a hodnoty sú z výstupu encodera. To umožňuje každej pozícii v decoderi zúčastniť sa na všetkých pozíciách vo vstupnej sekvencii.
Encoder obsahuje vrstvy Self-attention. Vo vrstve self-attention pochádzajú všetky kľúče, hodnoty a dotazy z rovnakého miesta, teda predchádzajúcej vrstvy v encoderu. Každá pozícia v encoderi sa môže venovať všetkým polohám v predchádzajúcej vrstve encodera.
Vrstvy self-attention v decoderi umožňujú každej pozícii v decoderi zúčastniť sa na všetkých polohách v decoderi až do danej polohy. Musí sa zabrániť toku informácii v decoderi, aby sa zachovala autoregresívna vlastnosť (model časových radov, ktorý používa pozorovania z predchádzajúcich časových krokov ako vstup do regresnej rovnice na predpovedanie hodnoty v nasledujúcom časovom kroku). To implementujeme do scaled dot-product attention pomocou maskovania (nastavením na -∞) všetkých hodnôt na vstupe softmax, ktoré zodpovedajú nezákonným spojeniam.
**R-Transformer**
|![](https://git.kemt.fei.tuke.sk/KEMT/zpwiki/raw/branch/master/pages/students/2016/patrik_pavlisin/dp22/R-Transformer.png)|
|:--:|
|Obr 5. R-Transformer|
Navrhovaný transformátor R sa skladá zo stohu rovnakých vrstiev. Každá vrstva má 3 komponenty, ktoré sú usporiadané hierarchicky. Ako je znázornené na obrázku, nižšou úrovňou sú lokálne rekurentné neurónové siete, ktoré sú určené na modelovanie lokálnych štruktúr v sekvencii, stredná úroveň je Multi-head attention, ktorá je schopná zachytiť globálne dlhodobé závislosti a horná úroveň je position-wise feedforward sieť, ktorá vykonáva nelineárnu transformáciu prvkov.
## Zoznam použitej literatúry
[1]. VASWANI A., SHAZEER N., PARMAR N., USZKOREIT J., JONES L., GOMEZ N.A., KASIER L., POLUSUKHIN.I.: _Attention Is All You Need._ [online]. [citované 2017].
[2]. WANG Z., MA Y., LIU Z., TANG J.: _R-Transformer: Recurrent Neural Network Enhanced Transformer._ [online]. [citované 12-07-2019].
[3]. SRIVASTAVA S.: _Machine Translation (Encoder-Decoder Model)!._ [online]. [citované 31-10-2019].
[4]. ALAMMAR J.: _The Illustrated Transformer._ [online]. [citované 27-06-2018].
[5]. _Sequence Modeling with Neural Networks (Part 2): Attention Models_ [online]. [citované 18-04-2016].
[6]. GIACAGLIA G.: _How Transformers Work._ [online]. [citované 11-03-2019].
[7]. _Understanding LSMT Networks_ [online]. [citované 27-08-2015].
[8]. _6 Types of Artifical Neural Networks Currently Being Used in Machine Translation_ [online]. [citované 15-01-201].