forked from KEMT/zpwiki
Update 'pages/students/2016/patrik_pavlisin/dp22/README.md'
This commit is contained in:
parent
9527967eb7
commit
dd8fee1544
@ -4,8 +4,12 @@
|
|||||||
|
|
||||||
Rekurentné neurónové siete, najmä long short-term pamäť (LSMT, špeciálny druh RNN, vytvorený na riešenie problémov s miznúcim gradientom) a uzavreté rekurentné neurónové siete, boli pevne zavedené ako najmodernejšie prístupy k problémom sekvenčného modelovania a prenosov, ako je jazykové modelovanie a strojový preklad. Početné snahy odvtedy pokračujú v posúvaní hraníc rekurentných jazykových modelov a architektúr encoder-decoder. Sieťové pamäte typu end-to-end sú založené na RNN (Recurrent Neural Network) mechanizme namiesto opakovania zarovnaného podľa sekvencie a ukázalo sa, že fungujú dobre pri úlohách zodpovedajúcich otázky v jednoduchom jazyku a pri modelovaní jazykov. End-to-end učenie je typ Deep Learningu, v ktorom sú všetky parametre trénované spoločne, a nie krok za krokom.
|
Rekurentné neurónové siete, najmä long short-term pamäť (LSMT, špeciálny druh RNN, vytvorený na riešenie problémov s miznúcim gradientom) a uzavreté rekurentné neurónové siete, boli pevne zavedené ako najmodernejšie prístupy k problémom sekvenčného modelovania a prenosov, ako je jazykové modelovanie a strojový preklad. Početné snahy odvtedy pokračujú v posúvaní hraníc rekurentných jazykových modelov a architektúr encoder-decoder. Sieťové pamäte typu end-to-end sú založené na RNN (Recurrent Neural Network) mechanizme namiesto opakovania zarovnaného podľa sekvencie a ukázalo sa, že fungujú dobre pri úlohách zodpovedajúcich otázky v jednoduchom jazyku a pri modelovaní jazykov. End-to-end učenie je typ Deep Learningu, v ktorom sú všetky parametre trénované spoločne, a nie krok za krokom.
|
||||||
|
|
||||||
|
RNN boli dlhodobo dominantnou voľbou pre sekvenčné modelovanie, závažne však trpia najme dvoma problémami. Po prvé, ľahko trpí problémami s miznutím a explodovaním gradientu, čo do značnej miery obmedzuje schopnosť naučiť sa veľmi dlhodobé závislosti. Po druhé, sekvenčná povaha prechodov dopredu aj dozadu veľmi sťažuje, ak nie priam znemožňuje, paralelizáciu výpočtu, čo dramaticky zvyšuje časovú zložitosť v tréningovom aj testovacom postupe. Preto mnohé nedávno vyvinuté modely sekvenčného učenia úplne vypustili rekurentnú štruktúru a spoliehajú sa iba na konvolučnú (Convolution Neural Network) alebo mechanizmus pozornosti, ktoré sa dajú ľahko paralelizovať a umožňujú tok informácií v ľubovoľnej dĺžke. Dva reprezentatívne modely, ktoré pritiahli veľkú pozornosť, sú Temporal Convolution Networks (TCN) a Transformer. V rôznych úlohách sekvenčného učenia preukázali porovnateľný alebo dokonca lepší výkon ako výkonnosť RNN.
|
||||||
|
|
||||||
Transformer je modelová architektúra, ktorá sa vyhýba opakovaniu a namiesto toho sa úplne spolieha na mechanizmus pozornosti na kreslenie globálnych závislostí medzi vstupom a výstupom. Je to prvý transdukčný model, ktorý sa spolieha úplne na vlastnú pozornosť pri výpočte reprezentácii vstupu a výstupu bez použitia RNN (Recurrent Neural Network) alebo CNN (Convolution Neural Network). Používa sa predovšetkým v oblasti NLP (Natural Language Processing) a CV (Computer Vision). Mechanizmy pozornosti sa stali súčasťou presvedčivého modelovania sekvencií a prenosových modelov v rôznych úlohách, ktoré umožňujú modelovanie závislostí bez ohľadu na ich vzdialenosť vo vstupných alebo výstupných sekvenciách. Takmer vo všetkých prípadoch sa však takéto mechanizmy pozornosti používajú v spojení s rekurentnou sieťou.
|
Transformer je modelová architektúra, ktorá sa vyhýba opakovaniu a namiesto toho sa úplne spolieha na mechanizmus pozornosti na kreslenie globálnych závislostí medzi vstupom a výstupom. Je to prvý transdukčný model, ktorý sa spolieha úplne na vlastnú pozornosť pri výpočte reprezentácii vstupu a výstupu bez použitia RNN (Recurrent Neural Network) alebo CNN (Convolution Neural Network). Používa sa predovšetkým v oblasti NLP (Natural Language Processing) a CV (Computer Vision). Mechanizmy pozornosti sa stali súčasťou presvedčivého modelovania sekvencií a prenosových modelov v rôznych úlohách, ktoré umožňujú modelovanie závislostí bez ohľadu na ich vzdialenosť vo vstupných alebo výstupných sekvenciách. Takmer vo všetkých prípadoch sa však takéto mechanizmy pozornosti používajú v spojení s rekurentnou sieťou.
|
||||||
|
|
||||||
|
Najmä Multi-head attention mechanizmus v Transformeri umožňuje, aby bola každá pozícia priamo spojená s akýmikoľvek inými pozíciami v sekvencii. Informácie tak môžu prúdiť cez pozície bez akejkoľvek medzistraty. Napriek tomu existujú dva problémy, ktoré môžu poškodiť účinnosť Multi-head attention pri sekvenčnom učení. Prvý pochádza zo straty sekvenčných informácií o pozíciách, pretože s každou pozíciou zaobchádza rovnako. Na zmiernenie tohto problému Transformer zavádza vkladanie pozícií, ktorých účinky sa však ukázali ako obmedzené.
|
||||||
|
|
||||||
**Modelová architektúra**
|
**Modelová architektúra**
|
||||||
|
|
||||||
Väčšina konkurenčných prenosových modelov neurónovej sekvencie má štruktúru encoder-decoder. V tomto prípade encoder mapuje vstupnú sekvenciu symbolových reprezentácií (x1, ..., xn) na sekvenciu spojitých reprezentácií z = (z1, ..., zn). Vzhľadom na z, decoder potom generuje výstupnú sekvenciu (y1, ..., ym) symbolov jeden po druhom. V každom kroku je model automaticky regresívny a pri generovaní ďalšieho spotrebuje predtým vygenerované symboly ako ďalší vstup.
|
Väčšina konkurenčných prenosových modelov neurónovej sekvencie má štruktúru encoder-decoder. V tomto prípade encoder mapuje vstupnú sekvenciu symbolových reprezentácií (x1, ..., xn) na sekvenciu spojitých reprezentácií z = (z1, ..., zn). Vzhľadom na z, decoder potom generuje výstupnú sekvenciu (y1, ..., ym) symbolov jeden po druhom. V každom kroku je model automaticky regresívny a pri generovaní ďalšieho spotrebuje predtým vygenerované symboly ako ďalší vstup.
|
||||||
|
Loading…
Reference in New Issue
Block a user