forked from KEMT/zpwiki
Update 'pages/students/2016/patrik_pavlisin/dp22/README.md'
This commit is contained in:
parent
cc8ff64199
commit
9527967eb7
@ -42,11 +42,11 @@ Obe vrstvy encodera a decodera majú feed-forward neurónovú sieť (umelá neur
|
||||
|
||||
**Transformer Encoder**
|
||||
|
||||
Encoder sa skladá zo zásobníka _N = 6_ rovnakých vrstiev. Každá vrstva má dve podvrstvy. Prvým je multi-head self-attention mechanizmus a druhým je jednoduchá polohovo plne prepojená sieť spätnej väzby. Multi-head Attention je modul pre mechanizmy pozornosti, ktorý prechádza mechanizmom pozornosti niekoľkokrát paralelne. Self-attention, tiež známy ako Intra-attention, je mechanizmus pozornosti, ktorý spája rôzne polohy jednej sekvencie s cieľom vypočítať reprezentáciu tej istej sekvencie. Okolo každej z dvoch čiastkových vrstiev sa používa zvyškové spojenie, po ktorom nasleduje normalizácia vrstvy. To znamená, že výstupom každej podvrstvy je _LayerNorm (x + Sublayer (x))_, kde _Sublayer (x)_ je funkcia implementovaná samotnou podvrstvou. Aby sa uľahčili tieto zvyškové spojenia, všetky podvrstvy v modeli, ako aj vkladacie vrstvy, produkujú výstupy dimenzie _dmodel_ = 512.
|
||||
Encoder sa skladá zo zásobníka _N = 6_ rovnakých vrstiev. Každá vrstva má dve podvrstvy. Prvým je Multi-head Self-attention mechanizmus a druhým je jednoduchá polohovo plne prepojená sieť spätnej väzby. Multi-head attention je modul pre mechanizmy pozornosti, ktorý prechádza mechanizmom pozornosti niekoľkokrát paralelne. Self-attention, tiež známy ako Intra-attention, je mechanizmus pozornosti, ktorý spája rôzne polohy jednej sekvencie s cieľom vypočítať reprezentáciu tej istej sekvencie. Okolo každej z dvoch čiastkových vrstiev sa používa zvyškové spojenie, po ktorom nasleduje normalizácia vrstvy. To znamená, že výstupom každej podvrstvy je _LayerNorm (x + Sublayer (x))_, kde _Sublayer (x)_ je funkcia implementovaná samotnou podvrstvou. Aby sa uľahčili tieto zvyškové spojenia, všetky podvrstvy v modeli, ako aj vkladacie vrstvy, produkujú výstupy dimenzie _dmodel_ = 512.
|
||||
|
||||
**Transformer Decoder**
|
||||
|
||||
Decoder je tiež zložený zo zásobníka _N = 6_ rovnakých vrstiev. Okrem dvoch podvrstiev v každej vrstve encodera, decoder vkladá tretiu podvrstvu, ktorá vykonáva multi-head attention nad výstupom encoder zásobníka. Podobne ako encoder, používa zvyškové spojenia okolo každej z podvrstiev, po ktorých nasleduje normalizácia vrstvy. Toto maskovanie v kombinácii so skutočnosťou, že vloženia výstupov sú posunuté o jednu pozíciu, zaisťuje, že predpovede pre polohu _i_ môžu závisieť iba od známych výstupov v polohách menších ako _i_.
|
||||
Decoder je tiež zložený zo zásobníka _N = 6_ rovnakých vrstiev. Okrem dvoch podvrstiev v každej vrstve encodera, decoder vkladá tretiu podvrstvu, ktorá vykonáva Multi-head attention nad výstupom encoder zásobníka. Podobne ako encoder, používa zvyškové spojenia okolo každej z podvrstiev, po ktorých nasleduje normalizácia vrstvy. Toto maskovanie v kombinácii so skutočnosťou, že vloženia výstupov sú posunuté o jednu pozíciu, zaisťuje, že predpovede pre polohu _i_ môžu závisieť iba od známych výstupov v polohách menších ako _i_.
|
||||
|
||||
**Scaled Dot-Product Attention**
|
||||
|
||||
@ -89,6 +89,6 @@ The Transformer využíva Multi-head attention tromi rôznymi spôsobmi:
|
||||
|
||||
Vo vrstvách „encoder-decoder attention“ pochádzajú dotazy z predchádzajúcej vrstvy decodera a pamäťové kľúče a hodnoty sú z výstupu encodera. To umožňuje každej pozícii v decoderi zúčastniť sa na všetkých pozíciách vo vstupnej sekvencii.
|
||||
|
||||
Encoder obsahuje vrstvy self-attention. Vo vrstve self-attention pochádzajú všetky kľúče, hodnoty a dotazy z rovnakého miesta, teda predchádzajúcej vrstvy v encoderu. Každá pozícia v encoderi sa môže venovať všetkým polohám v predchádzajúcej vrstve encodera.
|
||||
Encoder obsahuje vrstvy Self-attention. Vo vrstve self-attention pochádzajú všetky kľúče, hodnoty a dotazy z rovnakého miesta, teda predchádzajúcej vrstvy v encoderu. Každá pozícia v encoderi sa môže venovať všetkým polohám v predchádzajúcej vrstve encodera.
|
||||
|
||||
Vrstvy self-attention v decoderi umožňujú každej pozícii v decoderi zúčastniť sa na všetkých polohách v decoderi až do danej polohy. Musí sa zabrániť toku informácii v decoderi, aby sa zachovala autoregresívna vlastnosť (model časových radov, ktorý používa pozorovania z predchádzajúcich časových krokov ako vstup do regresnej rovnice na predpovedanie hodnoty v nasledujúcom časovom kroku). To implementujeme do scaled dot-product attention pomocou maskovania (nastavením na -∞) všetkých hodnôt na vstupe softmax, ktoré zodpovedajú nezákonným spojeniam.
|
Loading…
Reference in New Issue
Block a user