dmytro_ushatenko/pages/students/2019/michal_stromko/vp2023/Dokumentacia.md

2.6 KiB

TECHNICKÁ UNIVERZITA V KOŠICIACH
FAKULTA ELEKTRONIKY A INFORMATIKY





Hodnotenie vyhľadávania modelu








2022 Michal Stromko



Úvod

Cieľom tejto práce je zoznámenie sa s možnosťami hodnotenia modelov. Natrénovaný model dokáže vyhodnocovať viacerými technikami s použitím rôzdnych open source riešení. Každé z riešení nám ponúkne iné výsledky. V tejto práci bližšie opíšem základné pojmy, ktoré je potrebné poznať pri hodnotení. Opíšem základné informácie o technikách hodnotenia od základných pojmov ako Vektorové vyhľadávania, DPR, Sentence Transformers, BM-25, Faiss a mnoho ďalších.

Základné znalosti

Na začiatok je potrebné povedať, že pri spracovaní prirodzeného jazyka dokážeme používať rôzne metódy prístupu hodnotenia modelu, poprípade aj vyhľadávanie v modeli. V poslených rokoch sa v praxi stretávame s vyhľadávaním na základe vypočítania vektorov. Následne na takto vypočítané vektory dokážeme pomocou kosínusovej vzdialenosti nájsť vektory, inak povedané dve čísla, ktoré sú k sebe najblyžšie. Jedno z čísel je z množiny vektorov, ktoré patria hľadanému výrazu, druhé číslo patrí slovu, alebo vete, ktorá sa nacháza v indexe.

Pre uľahčenie pochopenia tejto problematiky, postupne vysvetlím vypočítanie a následné hladanie dvoch vektorov v tomto článku. Treba však poznamenať, že každá metóda má vlastné vypočítanie vektora spolu s hľadaním podobného vektora.

Dense Passage Retriever (DPR)

DPR nazývame ako typ systému, spracovania prirodzeného jazyka (NLP). Tento systém získava relevantné časti, inak povedané pasáže z veľkého korpusu textu. V kombinácii s sémantickou analýzou a algoritmom strojového učenia, ktorý idenetifikuje najrelevantnejšie pasáže pre daný dopyt. DPR je založený na používaní správneho enkódera, ktorý mapuje text na dimenzionálne vektory skutočnej hodnoty a vytvára index M, ktorý sa používa pre vyhľadávanie. Treba však povedať, že počas behu DPR sa aplikuje aj iný enkóder EQ, ktorý mapuje vstupnú otázku na d-rozmerný vektor a následne hľadá tie vektory, ktoré sú najbližšie k vektoru otázky. Podobnosť medzi otázkou a časťou odpovede definujeme pomocou Bodového súčinu ich vektorov.

vzorec podobnosti