dmytro_ushatenko/pages/students/2016/lukas_pokryvka/README.md

3.2 KiB

Lukáš Pokrývka

Rok začiatku štúdia: 2016

Diplomový projekt 1 2020

Ulohy na semester:

  • podrobne si naštudovať vybranú metódu trénovania neurónových sietí
  • identifikujte možný spôsob paralelizácie
  • natrénujte zvolený model metódou paralelizácie

Stretnutie 9.3.2020

Úlohy na ďalšie stretnutie:

Revízia 9.4.:

Nové úlohy:

Natrénujte word embedding model na veľkých dátach (odkaz poskytnutý). Môžete použiť server idoc.

Revízia 14.4.

  • Natrénovaný word embedding model na slovenských dátach.

Nové úlohy:

Tímový projekt 2019

Úlohy tímového projektu:

  • Vypracujte min. 4 stranový rešerš na tému: "Paralelné spracovanie prirodzeného jazyka" (využitie napr. s word2vec, word embeddings, GloVe, fastText).
  • Citujte min. 10 najvýznamnejších bibliografických zdrojov.

Písomná práca: Paralelné spracovanie prirodzeného jazyka

Diplomová práca 2021

Paralelné trénovanie neurónových sietí

Meno vedúceho: Ing. Daniel Hládek, PhD.

Návrh na zadanie DP:

  1. Vypracujte prehľad literatúry na tému "Paralelné trénovanie neurónových sietí".
  2. Vyberte vhodnú metódu paralelného trénovania.
  3. Pripravte dáta a vykonajte sadu experimentov pre overenie funkčnosti a výkonu paralelného trénovania.
  4. Navrhnite možné zlepšenia paralelného trénovania neurónových sietí.

Priebeh práce

1. Pokus o natrénovanie modelu pomocou knižnice Gensim

Ako prvý nástroj na zoznámenie sa s trénovaním W2V som zvolil Gensim. Nevýhodou knižnice je, že pri trénovaní nevyužíva GPU v žiadnom prípade. Podľa zdrojov na internete je však Gensim násobne rýchlejšia knižnica pri implementácii na menšie korpusy (https://rare-technologies.com/gensim-word2vec-on-cpu-faster-than-word2veckeras-on-gpu-incubator-student-blog/). Keďže môj korpus má približne 30GB, trénovanie pomocou Gensim by zrejme nebol najlepší nápad. Preto som si z korpusu vytiahol prvých 10,000 riadkov a otestoval implementáciu na tomto súbore. Celý skript je dostupný na gensim_W2V.py. Výsledok nebol vôbec presný, čo sa vzhľadom na veľkosť korpusu dalo očakávať. Pri slove letisko bola však zhoda vysoká, čo potvrdzuje správnosť implementácie.

Výsledok implementácie Gensim

Keďže som mal problém skript s plným korpusom spustiť na školskom serveri, v ďalšom riešení chcem využiť aj GPU. V úvahu pripadá aj rozdelenie korpusu na viacero častí s tým, že sa zachová kontext.