Cieľom tejto práce je zoznámenie s možnosťami hodnotenia modelov. Natrénovaný model dokážeme vyhodnotiť viacerými technickými metódami s použitím rôzdnych open source riešení. Každé z riešení nám ponúkne iné výsledky. V tejto práci bližšie opíšem základné pojmy, ktoré je potrebné poznať pri hodnotení. Opíšem základné informácie o technikách hodnotenia od základných pojmov ako napríklad Vektorové vyhľadávania, DPR, Sentence Transformers, BM-25, Faiss a mnoho ďalších.
Na začiatok je potrebné povedať, že pri spracovaní prirodzeného jazyka dokážeme používať rôzne metódy prístupu hodnotenia modelu, poprípade aj vyhľadávanie v modeli. V poslených rokoch sa v praxi stretávame s vyhľadávaním na základe vypočítania vektorov. Následne na takto vypočítané vektory dokážeme pomocou kosínusovej vzdialenosti nájsť vektory, inak povedané dve čísla, ktoré sú k sebe najbližšie. Jedno z čísel je z množiny vektorov, ktoré patria hľadanému výrazu, druhé číslo patrí slovu alebo vete, ktorá sa nacháza v indexe.
Vyhodnotenie vyhľadávania je v modeli dôležité z hľadiska budúceho použitia modelu do produkcie. Pokiaľ sa do produkcie dostane model, ktorý bude mať nízke ohodnotenie bude sa stávať, že vyhľadávanie bude nepresné čo znamená, že výsledky nebudú relevantné k tomu čo sme vyhľadávali.
V tejto práci som realizoval viaceré experimenty, v ktorých som hodnotil vyhľadávanie pomocou modelov, do ktorých bol zaembedovaný text. Každý text obsahuje ďalšie atribúty, ako otázky a odpovede. Otázky sa následne pošlú na vyhľadanie a čaká sa na výsledok vyhľadávania. Výsledky, ktoré prídu sa následne porovnajú s očakávanými odpoveďami. Najdôležitejšie je nájsť v jednej odpovedi čo najviac správnych výsledkov. Následne je potrebné spočítať počet správnych výsledkov a použiť správne vypočítanú presnosť a návratnosť vyhľadávania. V tomto prípade presnosť a návratnosť počítame pre hodnotenie všetkých otázok. Čím sú hodnoty vyššie, tak môžeme konštatovať, že vyhľadávanie pomocou danej metódy je presné a dokážeme ho používať v produkcii.
Dôležtým atribútom, s ktorým sme vykonávali testovanie bolo menenie parametra **top_k**. Tento parameter znamená počet najlepších odpovedí na výstupe vyhľadávania. Čím je tento paramter väčší, tým môžeme očakávať, že sa v ňom bude nachádzať väčšie množstvo správnych odpovedí. V konečnom dôledku to vôbec nemusí byť pravda, pretože ak máme kvalitne natrénovaný model a dobre zaembedované dokumenty dokážeme mať správne výsledky na prvých miestach čo nám ukazuje, že parameter *top_k* može mať menšiu hodnotu.
Najčastejšie je táto hodnota nastavovaná na top 10 najlepších výsledkov vyhľadávania. Pri experimentoch som túto hodnotu nastavoval na hodnoty **5, 10, 15, 20, 30**. Každá metóda, ktorá bola pouťitá na vyhľadávanie dosiahla iné výsledky.
Faiss používal knižnicu spacy, do ktorej parameter model_name vstupoval model ktorý bol natrénovaný pre slovenské dáta na mojej katedre. Následne boli dáta indexované pomocou knižnice faiss, ktorá má funkciu indexovania dát. Vyhľadávanie dát bolo tak isto realizované pomocou funkcie *faiss.search()*, ktorej parametre sú otázka a počet očakávaných dokumentov, inak povedané odpovedí.
Pri vyhľadávaní informácii v BM25, označený Okapi je navrhnutý tak, že vyhľadáva na základe najlepšej zhody. Vyhľadávanie funguje na nájdení najlepších dokumentov, ktoré sú zoradené podľa relevantnosti k vyhľadanej požiadavke. Je založený na zoradenína pravdepodobnostnom rámci. BM 25 bol v priebehu rokov modifikovaný a vylepšovaný.
Pre vypočítanie skóra používa Inverse documents frequency (IDF). Vypočíta sa ako N a značí celkový počet dokumentov. Pri výpočte sa používa maximálna hodnota zo všetkých indexov, ktorá pochádza z najväčšieho indexu disku. Pre lepšie pochopenie IDF vypočítava uzol obsahu a index, treba však rátať s tým, že sa môžu vyskytovať mierne odchylky.
Jedným z dôležitých atribútov je či sa konenčný výsledný dokument vyskytne viackrát v relevantých odpovediach. Čím viackrát sa opakuje jeden dokument, tým je väčšia pravdepodobnoť, že bude označený za jeden z najlepších výsledkov vyhľadávania.
Evaluovanie pomocou modelu LaBSE a sts-slovakbert-stsb som realizoval použítím knižnice **Sentence tranformers**. Práca s touto knižnicou je veľmi jednoduchá, pretože v dokumentácii, ktorú obsahuje, vieme veľmi jednoducho zaembedovať dokumenty a zároveň aj vyhľadávať.
Ako môžete vidieť v práci som použil model LaBSE aj keď som mal k dispozícii priamo natrénovaný model pre slovenčinu. Bolo to z dôvodu zistiť ako sa bude správať model LaBSE oproti modelu, ktorý bol natrénovaný pre Sloveský jazyk. Model LaBSE nebol vybratý len tak náhodou. Je to špecifický model, ktorý bol natrénovaný tak, aby podporoval vyhľadávanie, klasifikáciu textu a ďalšie aplikácie vo viacerých jazykoch. Vo všeobecnosti je označovaný ako multilangual embedding model. Je to model, ktorý je prispôsobený rôznym jazykom nielen pri indexovaní, ale aj vyľadávaní. Nájväčšou výhodou modelu je, že môžeme mať dokument, v ktorom sa nachádzajú vety vo vicacerých jazykoch. Pre niektoré modeli je to veľké obmedzenie, s ktorým si neporadia, avšak LaBSE je stavaný na takéto situácie, a tak si ľahko poradí a zaindexuje tento dokument.
Môžeme ho označiť ako sentence similarity model založený na SlovakBERT. Model bol dotrénovaný na STSbenchmark a preložený do slovenčniny pomocou M2M100. Model používa univerzálny sentence enkóder pre slovenské vety. Autory článku, ktorý trénovali SlovakBERT uvádzajú, že model je založený na large-scale transformers-based a používa 19,35 GB dát získaných z crawlovania webov so slovenským textom. Autori nakoniec vyhodnotili a prirovnali tento model ku ostatným veľkým jayzykovým modelom, ako napríklad XLM-R-Large.
Je to síce prvý model, ktorý dosahuje najlepšie výsledky oproti ostatným jazykovým modelom pre slovenčinu, ale treba si všimnúť, že stále tu existujú viacjazyčné jazykové modely, ktoré sú stále konkurencieschopné.
Hodnotenie modelu prebiehalo hlavne pomocou metriky F1. F1 bola priemerovaná zo súborov údajov. Autori modelu uvádzajú, že pri použití nízkych hodnôť hyperparametrov sa váhy moc nemenia, čo znamená lepšie výsledky hodnotenia.
Nevýhodou tohto jazykového modelu je nedostatok hodnotiacich benchmarkov. Ďalej vznikal problém s korpusom textov, tento model bol natrénovaný na dátach, ktoré boli vytvorené strojovým prekladom. Práve kvôli tomu vznikali chyby ako *noisy datasets (v prípade analýzy sentimentu)*.
Spolu bolo realizovananých 20 experimentov vyhnotenia vyhľadávania na trénovacom datasete skquad. Každý jeden experiment pozostával z indexovania datasetu a následním vyhľadávaním na vopred vytvorených otázkach. Metódy medzi sebou mali spoločný počet experimentov a pri každej metóde boli vypočítané metriky Precission a Recall.Zároveň na každej metóde bolo vykonaných 5 experimentov s rôznymi parametrami top_k. Z týchto experimentov vznikla jedna veľká, nie moc prehľadná tabuľka, ktorú môžete vidieť nižšie.
V poslednom kroku je potrebné vyhodnotiť experimenty. Z takejto neprehľadnej tabuľky je to zložité, preto som zvolil prístup vytvorenia grafov, na ktorých presne vidno, ktorá metóda je najlepšia. Boli vytvorené grafy, ktoré ukazujú výskedky presnosti a návratnosti na rovnakom počte vrátaných odpovedí medzi métódami. Posledné 4 grafy znázorňujú každú metódu samostatne s narastajúcim počtom odpovedí.
V tomto grafe môžete vidieť, že pri vyhľadávaní top 5 odpovedí najlepšiu presnosť a návratnosť mala metóda BM25, ktorá dosiahla najlepšie výsledky. Najhoršie výsledky boli dosiahnuté metódou Faiss. Metóda sentence transformers s použitím LaBSE dosiahla druhý najlepší výsledok.
Pri 10 najlepších odpovediach BM25 dosiahlo lepší výsledok Recall, ako pri top 5 výsledkoch, ale zároveň Precision sa zhoršila. Faiss má naďalej najhoršie výsledky. Sentence tranformers s použitím slovenského modelu slovakbert-sts-stsb sa zlepšila oproti predchádzajúcemu grafu.
Na tomoto grafe ďalej môžeme sledovať zlepšovanie Recall pre BM25, ale treba si však všimnúť, že Precission klesá. Dôležtým mýlnikom pri tomto grafe je porovnanie modelu LaBSE s slovakbert-sts-stsb, pretože slovakbert sa začína správať pri najlepších 15 odpovediach ako model LaBSE, to nám môže aj naznačit, že s rastúcim počtom odpovedí pre model LaBSE neprichádza viac správnych dokumentov, ako by sa očakávalo. Najväčšie priblíženie modelu slovakbert k modelu LaBSE môžete vidieť na metrike Precision.
Na tomto grafe už môžeme vidieť, že model LaBSE a slovakbert majú skoro rovnaké hodnoty Precision a Recall. To nám môže nazanačovať, že použitie modelu slovakbert bude silnejšie pri vracaní väčšieho počtu výsledkov.
Posledný graf v tejto kategórii nám ukazuje, že aj pri 30 odpovediach má metóda BM25 najlepší Recall, ale treba sa pozrieť na model slovakbert, ktorý má pri top 30 odpovedach minimálnu odchýlku od modelu LaBSE.
V tejto časti práce skúsim bližšie zobraziť dva grafy, na ktorých môžete vidieť správanie metódy hodnotenia vyhľadávania s narastajúcim počtom výsledkov z vyhľadávania. Nižšie sa nachádzajú iba 2 metódy, ktoré podľa mňa v experimentoch dosiahli najlepšie výsledky.
Metóda BM25 počas všetkých experimentov vykazovala najlepšie výsledky, nie len Precission, ale aj Recall. Na grafe môžete vidieť, že s narastajúcim počtom výsledkov Precission klesal, ale zároveň Recall stúpal. Pri tejto metóde vidím môžnosti experimentovania, napríklad pri 50 alebo 100 odpovediach z vyhľadávania
Model slovakbert, ktorý bol zverejnený na konci minulého roka, dosiahol pri poskytnutom datasete perfektné výsledky. Dovoľujem si to tvrdiť z toho dôvodu, že nebol trénovaný na datasete, ktorým bol hodnotený. V budúnosti by mohlo byť zaujímavé dotrénovať tento model pomocou použitého datasetu a následne takýto model ohodnotiť. Predpokladám, že tento model by mohol lepšie vyhľadávať aj pri menšom množstve najlepších výsledkov z vyhľadávania.
V tejto práci sa mi podarilo úspešne vykonať 20 experimentov, ktoré ukázali, že dokážeme efektívne využiť natrénovaný slovenský model na iných dátach. Zároveň môžeme vidieť aj efektívne vyhľadávanie metódou BM25, ktorá dosahovala nadpriemerné výsledky.
Pokračovanie v práci by som mohol realizovať použitím dvoch techník vyhľadávania. Ideálnym prípadom môže byť použitie oboch metód. Je dôležité, aby metódy išli v správnom poradí. Po prvom vyhľadávan by bolo ideálne použiť text similarity pre efektívne zoradenie výsledkov.