zpwiki/pages/students/2016/jakub_maruniak/dp2021/README.md

41 lines
2.2 KiB
Markdown
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

## Diplomový projekt 2 2020
Stav:
- aktualizácia anotačnej schémy (jedná sa o testovaciu schému s vlastnými dátami)
- vykonaných niekoľko anotácii, trénovanie v Prodigy - nízka presnosť = malé množstvo anotovaných dát. Trénovanie v spacy zatiaľ nefunguje.
- Štatistiky o množstve prijatých a odmietnutých anotácii získame z Prodigy: prodigy stats wikiart. Zatiaľ 156 anotácii (151 accept, 5 reject). Na získanie prehľadu o množstve anotácii jednotlivých entít potrebujeme vytvoriť skript.
- Prehľad literatúry Named Entity Corpus
- Budovanie korpusu pre NER automatické vytvorenie už anotovaného korpusu z Wiki pomocou DBpedia jedná sa o anglický korpus, ale možno spomenúť v porovnaní postupov
- Building a Massive Corpus for Named Entity Recognition using Free Open Data Sources - Daniel Specht Menezes, Pedro Savarese, Ruy L. Milidiú
- Porovnanie postupov pre anotáciu korpusu (z hľadiska presnosti aj času) - Manual, SemiManual
- Comparison of Annotating Methods for Named Entity Corpora - Kanako Komiya, Masaya Suzuki
- Čo je korpus, vývojový cyklus, analýza korpusu (Už využitá literatúra cyklus MATTER)
- Natural Language Annotation for Machine Learning James Pustejovsky, Amber Stubbs
Aktualizácia 09.11.2020:
- Vyriešený problém, kedy nefungovalo trénovanie v spacy
- Vykonaná testovacia anotácia cca 500 viet. Výsledky trénovania pri 20 iteráciách: F-Score 47% (rovnaké výsledky pri trénovaní v Spacy aj Prodigy)
- Štatistika o počte jednotlivých entít: skript count.py
## Diplomový projekt 1 2020
- vytvorenie a spustenie docker kontajneru
```
./build-docker.sh
docker run -it -p 8080:8080 -v ${PWD}:/work prodigy bash
# (v mojom prípade:)
winpty docker run --name prodigy -it -p 8080:8080 -v C://Users/jakub/Desktop/annotation/work prodigy bash
```
### Spustenie anotačnej schémy
- `dataminer.csv` články stiahnuté z wiki
- `cd ner`
- `./01_text_to_sent.sh` spustenie skriptu *text_to_sent.py*, ktorý rozdelí články na jednotlivé vety
- `./02_ner_correct.sh` spustenie anotačného procesu pre NER s návrhmi od modelu
- `./03_ner_export.sh` exportovanie anotovaných dát vo formáte jsonl potrebnom pre spracovanie vo spacy