Compare commits

..

No commits in common. "01645b8862eec6b588af4159b268fcfca644f979" and "1546a63b75f9a605a5f4b6a9217adebd4ade12ee" have entirely different histories.

2 changed files with 31 additions and 35 deletions

View File

@ -32,10 +32,9 @@ def classify(start_link):
mongocrawler.classify(start_link)
@cli.command()
@click.argument("hostname",help="Hostname to crawl")
@click.option("--filter_content",default=True,help="Filter content")
def visit(hostname,filter_content=True):
mongocrawler.visit(hostname,filter_content=filter_content)
@click.argument("hostname")
def visit(hostname):
mongocrawler.visit(hostname)
@cli.command()
def summary():

View File

@ -24,28 +24,24 @@ import hashlib
from bs4 import BeautifulSoup
import urllib.parse
import os.path
import binascii
import json
# database options
CONNECTION=os.getenv("SUCKER_CONNECTION","mongodb://root:example@localhost:27017/")
DBNAME=os.getenv("SUCKER_DBNAME","crawler")
# retrieving filter
BATCH_SIZE = int(os.getenv("SUCKER_BATCH_SIZE","10"))
MIN_FILE_SIZE=int(os.getenv("SUCKER_MIN_FILE_SIZE","300"))
MAX_FILE_SIZE=int(os.getenv("SUCKER_MAX_FILE_SIZE","10000000"))
# document originality filter
MIN_TEXT_SIZE=int(os.getenv("SUCKER_MIN_TEXT_SIZE","200"))
CHECK_PARAGRAPH_SIZE=int(os.getenv("SUCKER_CHECK_PARAGRAPH_SIZE","150"))
TEXT_TRASH_RATIO=float(os.getenv("SUCKER_TEXT_TRASH_RATIO","0.6"))
# link and domain sampling
DISCOVER_LINK_RATIO = float(os.getenv("SUCKER_DISCOVER_LINK_RATIO","0.3"))
SAMPLE_SET_SIZE = int(os.getenv("SUCKER_DISCOVER_LINK_RATIO","10000"))
CLASSIFIER_SET_SIZE = int(os.getenv("SUCKER_DISCOVER_LINK_RATIO","200"))
# link filter
LANGUAGE= os.getenv("SUCKER_LANGUAGE","sk")
DOMAIN = os.getenv("SUCKER_DOMAIN","sk")
STOP_PATHS=os.getenv("SUCKER_STOP_PATHS","xml,rss,login,admin").split(",")
BATCHSIZE=int(os.getenv("SUCKER_BATCHSIZE","10"))
CONNECTION=os.getenv("SUCKER_CONNECTION","mongodb://root:example@localhost:27017/")
DBNAME=os.getenv("SUCKER_DBNAME","crawler")
MINFILESIZE=300
MAXFILESIZE=10000000
MINTEXTSIZE=200
CHECK_PARAGRAPH_SIZE=200
TEXT_TRASH_SIZE=200
TEXT_TRASH_RATIO=0.6
DISCOVER_LINK_RATIO = 0.3
DISCOVER_DOMAIN_RATIO = 0.5
SAMPLE_SET_SIZE =10000
CLASSIFIER_SET_SIZE = 200
STOP_PATHS=["xml","rss","login","admin"]
def get_bs_links(link,html):
# Extrakcia linkov zo stranky
@ -169,15 +165,14 @@ def fetch_page(link:str)->(str,str):
html = None
if response is not None :
good = True
print(response)
if response.status != 200:
good = False
LOGGER.error('not a 200 response: %s for URL %s', response.status, url)
elif response.data is None or len(response.data) < MIN_FILE_SIZE:
elif response.data is None or len(response.data) < MINFILESIZE:
LOGGER.error('too small/incorrect for URL %s', link)
good = False
# raise error instead?
elif len(response.data) > MAX_FILE_SIZE:
elif len(response.data) > MAXFILESIZE:
good = False
LOGGER.error('too large: length %s for URL %s', len(response.data), link)
if good:
@ -209,7 +204,7 @@ def extract_page(final_link,html):
if html is not None:
doc = trafilatura.bare_extraction(html,url=final_link,with_metadata=True,include_formatting=False,target_language=LANGUAGE,favor_precision=True)
if doc is not None:
if not "text" in doc or len(doc["text"]) < MIN_TEXT_SIZE:
if not "text" in doc or len(doc["text"]) < MINTEXTSIZE:
# text too small
doc = None
return doc
@ -231,7 +226,7 @@ def set_content_checksums(doc):
sentences += 1
doc["sentences_count"] = sentences
def index_page(db,original_link,final_link,html,doc,filter_content=True):
def index_page(db,original_link,final_link,html,doc):
linkcol = db["links"]
htmlcol = db["html"]
contentcol = db["content"]
@ -249,7 +244,7 @@ def index_page(db,original_link,final_link,html,doc,filter_content=True):
set_content_checksums(doc)
tsz = doc["text_size"]
psz = doc["paragraph_sizes_sum"]
if filter_content and (tsz < MIN_TEXT_SIZE or psz/tsz < TEXT_TRASH_RATIO):
if tsz < TEXT_TRASH_SIZE or psz/tsz < TEXT_TRASH_RATIO:
state = "small"
# check copy
if state == "good":
@ -261,7 +256,7 @@ def index_page(db,original_link,final_link,html,doc,filter_content=True):
origsz += paragraph_size
doc["original_text_size"] = origsz
if filter_content and (1 - (origsz / tsz)) > TEXT_TRASH_RATIO:
if (1 - (origsz / tsz)) > TEXT_TRASH_RATIO:
state = "copy"
if state == "good":
htdoc = get_link_doc(link,state)
@ -667,10 +662,10 @@ def classify(start_link):
cl.train(trainset)
cl.test(testset)
def visit(hostname,filter_content=True):
def visit(hostname):
myclient = pymongo.MongoClient(CONNECTION)
db=myclient[DBNAME]
batch_size = BATCH_SIZE
batch_size = BATCHSIZE
rules = fetch_robot(hostname)
start_link = "https://" + hostname
# renew front links
@ -701,7 +696,7 @@ def visit(hostname,filter_content=True):
final_states = []
docs = []
for original_link,final_link,html,doc in extracted_pages:
status = index_page(db,original_link,final_link,html,doc,filter_content)
status = index_page(db,original_link,final_link,html,doc)
final_states.append(status)
docs.append(doc)
save_batch_info(db,hostname,final_states,docs)
@ -731,6 +726,8 @@ def crawl_summary():
values = [str(item[x]) for x in headers]
print("\t".join(values))
import binascii
import json
def import_html():
myclient= pymongo.MongoClient(CONNECTION)
@ -754,7 +751,7 @@ def sample_domains():
all_domains = []
for domain in domains:
all_domains.append(domain)
sample_size = min(int(DISCOVER_LINK_RATIO* BATCH_SIZE), len(all_domains))
sample_size = min(int(DISCOVER_DOMAIN_RATIO* BATCHSIZE), len(all_domains))
print(">>> Discover domains {}".format(sample_size))
sample_domains = random.sample(all_domains,sample_size)
domaincol = db["domains"]
@ -763,7 +760,7 @@ def sample_domains():
all_domains = []
for item in res:
all_domains.append(item["host"])
sample_size = min(int((1 - DISCOVER_LINK_RATIO) * BATCH_SIZE),len(all_domains))
sample_size = min(int((1 - DISCOVER_DOMAIN_RATIO) * BATCHSIZE),len(all_domains))
print(">>>> Best domains {}".format(sample_size))
sample_domains += random.sample(all_domains,sample_size)
for domain in sample_domains: