This commit is contained in:
Daniel Hládek 2023-04-14 08:22:24 +02:00
parent 4a42078bef
commit 1546a63b75

View File

@ -33,10 +33,11 @@ DBNAME=os.getenv("SUCKER_DBNAME","crawler")
MINFILESIZE=300
MAXFILESIZE=10000000
MINTEXTSIZE=200
CHECK_PARAGRAPH_SIZE=150
CHECK_PARAGRAPH_SIZE=200
TEXT_TRASH_SIZE=200
TEXT_TRASH_RATIO=0.6
DISCOVER_LINK_RATIO = 0.3
DISCOVER_DOMAIN_RATIO = 0.5
SAMPLE_SET_SIZE =10000
CLASSIFIER_SET_SIZE = 200
STOP_PATHS=["xml","rss","login","admin"]
@ -61,6 +62,7 @@ def get_bs_links(link,html):
netloc = parsed.netloc
path = os.path.normpath(parsed.path)
scheme = parsed.scheme
query = parsed.query
# internal link
if parsed.netloc == "":
scheme = base.scheme
@ -74,7 +76,7 @@ def get_bs_links(link,html):
if path.endswith(")"):
# javascript
continue
href = urllib.parse.urlunparse((scheme,netloc,path,"","",""))
href = urllib.parse.urlunparse((scheme,netloc,path,"",query,""))
href = courlan.normalize_url(href)
links.add(href)
except ValueError as err:
@ -232,7 +234,6 @@ def index_page(db,original_link,final_link,html,doc):
state = "good"
link = original_link
if original_link != final_link:
print(original_link,final_link)
linkcol.update_one({"url":original_link},{"$set":{"status":"redirect"}})
link = final_link
if html is None:
@ -250,7 +251,6 @@ def index_page(db,original_link,final_link,html,doc):
origsz = 0
for chs,paragraph_size in zip(doc["paragraph_checksums"],doc["paragraph_sizes"]):
# index paragraph checksums
print(checkcol)
nd = checkcol.find_one({"_id":chs})
if nd is None:
origsz += paragraph_size
@ -258,7 +258,6 @@ def index_page(db,original_link,final_link,html,doc):
if (1 - (origsz / tsz)) > TEXT_TRASH_RATIO:
state = "copy"
print(origsz)
if state == "good":
htdoc = get_link_doc(link,state)
htdoc["html"] = html
@ -273,10 +272,7 @@ def index_page(db,original_link,final_link,html,doc):
del doc["url"]
contentcol.update_one({"url":link},{"$set":doc},upsert=True)
for chs in doc["paragraph_checksums"]:
try:
checkcol.insert_one({"_id":chs})
except pymongo.errors.DuplicateKeyError as err:
pass
checkcol.update_one({"_id":chs},{"$inc":{"count":1}},upsert=True)
linkdoc = get_link_doc(link,state)
del linkdoc["url"]
@ -304,7 +300,6 @@ def save_batch_info(db,host,states,docs):
"batch_size": batch_size,
}
db["batches"].insert_one(batchdoc)
print(batchdoc)
def extract_links(link_batch:list,responses:list,hostname:str,rules,default_status="frontlink")->list:
@ -315,15 +310,11 @@ def extract_links(link_batch:list,responses:list,hostname:str,rules,default_stat
if html is None or len(html) < 256:
continue
page_links = get_bs_links(final_link,html)
#external_links = courlan.extract_links(html,final_link,external_bool=True,language=LANGUAGE)
#internal_links = courlan.extract_links(html,final_link,external_bool=False,language=LANGUAGE)
#print(extracted_links)
for link in page_links:
if not courlan.is_external(link,final_link) and not is_robot_good(link,rules):
badrobot += 1
continue
status = str(default_status)
#print(link,status)
links[link] = status
outlinks = []
badlink = 0
@ -449,7 +440,6 @@ class LinkClassifier:
goodprob += g
b = math.log(self.badcounter[feature] + self.alpha) - bcc
badprob += b
print(feature,g,b)
pa = math.exp(goodprob + gp)
pb = math.exp(badprob + bp)
return pa - pb #+ random.uniform(-0.001,0.001)
@ -730,7 +720,7 @@ def crawl_summary():
{"$sort":{"original_text_size":-1}},
])
print(">>>> Batches")
headers = ["_id","document_count","good_document_count","batch_count","text_size","original_text_size"]
headers = ["_id","document_count","good_document_count","batch_size","original_text_size"]
print("\t".join(headers))
for item in res:
values = [str(item[x]) for x in headers]
@ -761,7 +751,7 @@ def sample_domains():
all_domains = []
for domain in domains:
all_domains.append(domain)
sample_size = min(int(DISCOVER_LINK_RATIO* BATCHSIZE), len(all_domains))
sample_size = min(int(DISCOVER_DOMAIN_RATIO* BATCHSIZE), len(all_domains))
print(">>> Discover domains {}".format(sample_size))
sample_domains = random.sample(all_domains,sample_size)
domaincol = db["domains"]
@ -770,7 +760,7 @@ def sample_domains():
all_domains = []
for item in res:
all_domains.append(item["host"])
sample_size = min(int((1 - DISCOVER_LINK_RATIO) * BATCHSIZE),len(all_domains))
sample_size = min(int((1 - DISCOVER_DOMAIN_RATIO) * BATCHSIZE),len(all_domains))
print(">>>> Best domains {}".format(sample_size))
sample_domains += random.sample(all_domains,sample_size)
for domain in sample_domains: