54 lines
1.8 KiB
Python
54 lines
1.8 KiB
Python
from datasets import load_dataset
|
|
from transformers import T5Tokenizer, T5ForConditionalGeneration, Trainer, TrainingArguments
|
|
|
|
# Initialize the tokenizer
|
|
model_name = "t5-small"
|
|
tokenizer = T5Tokenizer.from_pretrained(model_name)
|
|
|
|
# Load the dataset with the specific configuration
|
|
dataset = load_dataset("wiki_atomic_edits", "english_insertions", trust_remote_code=True)
|
|
|
|
# Inspect the dataset splits
|
|
print(dataset.keys()) # Print available dataset splits
|
|
|
|
# Preprocessing Function
|
|
def preprocess_function(examples):
|
|
inputs = examples["base_sentence"]
|
|
targets = examples["edited_sentence"]
|
|
model_inputs = tokenizer(inputs, max_length=128, truncation=True, padding="max_length")
|
|
labels = tokenizer(targets, max_length=128, truncation=True, padding="max_length")
|
|
labels["input_ids"] = [
|
|
[(label if label != tokenizer.pad_token_id else -100) for label in labels_example]
|
|
for labels_example in labels["input_ids"]
|
|
]
|
|
model_inputs["labels"] = labels["input_ids"]
|
|
return model_inputs
|
|
|
|
# Apply the preprocessing function to the dataset
|
|
tokenized_datasets = dataset.map(preprocess_function, batched=True)
|
|
|
|
# Initialize the model
|
|
model = T5ForConditionalGeneration.from_pretrained(model_name)
|
|
|
|
# Set up training arguments
|
|
training_args = TrainingArguments(
|
|
output_dir="./results",
|
|
evaluation_strategy="epoch", # Updated from eval_strategy to evaluation_strategy
|
|
learning_rate=2e-5,
|
|
per_device_train_batch_size=4,
|
|
per_device_eval_batch_size=4,
|
|
num_train_epochs=3,
|
|
weight_decay=0.01,
|
|
logging_dir="./logs",
|
|
)
|
|
|
|
# Initialize Trainer
|
|
trainer = Trainer(
|
|
model=model,
|
|
args=training_args,
|
|
train_dataset=tokenized_datasets["train"],
|
|
eval_dataset=tokenized_datasets.get("validation") # Use .get() to avoid KeyError
|
|
)
|
|
|
|
# Start training
|
|
trainer.train() |