from datasets import load_dataset from transformers import T5Tokenizer, T5ForConditionalGeneration, Trainer, TrainingArguments # Initialize the tokenizer model_name = "t5-small" tokenizer = T5Tokenizer.from_pretrained(model_name) # Load the dataset with the specific configuration dataset = load_dataset("wiki_atomic_edits", "english_insertions", trust_remote_code=True) # Inspect the dataset splits print(dataset.keys()) # Print available dataset splits # Preprocessing Function def preprocess_function(examples): inputs = examples["base_sentence"] targets = examples["edited_sentence"] model_inputs = tokenizer(inputs, max_length=128, truncation=True, padding="max_length") labels = tokenizer(targets, max_length=128, truncation=True, padding="max_length") labels["input_ids"] = [ [(label if label != tokenizer.pad_token_id else -100) for label in labels_example] for labels_example in labels["input_ids"] ] model_inputs["labels"] = labels["input_ids"] return model_inputs # Apply the preprocessing function to the dataset tokenized_datasets = dataset.map(preprocess_function, batched=True) # Initialize the model model = T5ForConditionalGeneration.from_pretrained(model_name) # Set up training arguments training_args = TrainingArguments( output_dir="./results", evaluation_strategy="epoch", # Updated from eval_strategy to evaluation_strategy learning_rate=2e-5, per_device_train_batch_size=4, per_device_eval_batch_size=4, num_train_epochs=3, weight_decay=0.01, logging_dir="./logs", ) # Initialize Trainer trainer = Trainer( model=model, args=training_args, train_dataset=tokenized_datasets["train"], eval_dataset=tokenized_datasets.get("validation") # Use .get() to avoid KeyError ) # Start training trainer.train()