401 lines
15 KiB
Markdown
401 lines
15 KiB
Markdown
---
|
|
title: Maroš Harahus
|
|
published: true
|
|
taxonomy:
|
|
category: [dp2021,bp2019]
|
|
tag: [spacy,nlp]
|
|
author: Daniel Hladek
|
|
---
|
|
# Maroš Harahus
|
|
|
|
- [Git repozitár ai4steel](https://git.kemt.fei.tuke.sk/ai4steel/ai4steel) (pre členov skupiny)
|
|
- [GIT repozitár s poznámkami](https://git.kemt.fei.tuke.sk/mh496vd/Doktorandske) (súkromný)
|
|
|
|
## Dizertačná práca
|
|
|
|
Generovanie vektorových reprezentácií štruktúrovaných dát.
|
|
|
|
## Minimovka 2023
|
|
|
|
- Grafové neurónové siete
|
|
|
|
Report 18.3.2022
|
|
|
|
- práca na dátach (príprava na TS, zisťovanie súvislosti, hľadanie hraničných hodnôt)
|
|
- študovanie timesesries (https://heartbeat.comet.ml/building-deep-learning-model-to-predict-stock-prices-part-1-2-58e62ad754dd,)
|
|
- študovanie o reinforcement learning (https://github.com/dennybritz/reinforcement-learning
|
|
https://github.com/ShangtongZhang/reinforcement-learning-an-introduction)
|
|
- študovanie o transfer learning
|
|
- študovanie feature selection (https://machinelearningmastery.com/feature-selection-machine-learning-python/
|
|
https://www.kdnuggets.com/2021/12/alternative-feature-selection-methods-machine-learning.html)
|
|
|
|
|
|
|
|
|
|
|
|
Report 11.3.2022
|
|
|
|
- Data Preprocessing (inspirácia- https://www.kaggle.com/tajuddinkh/drugs-prediction-data-preprocessing-json-to-csv)
|
|
- Analyzovanie dát (inspirácia- https://www.kaggle.com/rounakbanik/ted-data-analysis, https://www.kaggle.com/lostinworlds/analysing-pokemon-dataset
|
|
https://www.kaggle.com/kanncaa1/data-sciencetutorial-for-beginners)
|
|
- Pracovanie na scripte jsnol --> csv
|
|
|
|
- Študovanie time series (https://www.machinelearningplus.com/time-series/time-series-analysis-python/
|
|
Python Live - 1| Time Series Analysis in Python | Data Science with Python Training | Edureka
|
|
Complete Python Pandas Data Science Tutorial! (Reading CSV/Excel files, Sorting, Filtering, Groupby)
|
|
https://www.kaggle.com/kashnitsky/topic-9-part-1-time-series-analysis-in-python)
|
|
- Time series články (https://ieeexplore.ieee.org/abstract/document/8853246
|
|
https://ieeexplore.ieee.org/abstract/document/8931714
|
|
https://ieeexplore.ieee.org/abstract/document/8942842
|
|
https://arxiv.org/abs/2103.01904)
|
|
|
|
Working on:
|
|
- Neurónovej siete pre GAN time series (stále mam nejaké errory)
|
|
- klasickej neuronke
|
|
|
|
|
|
Stretnutie 1.3.2022
|
|
|
|
|
|
Úlohy:
|
|
|
|
- Zapracovať wandB pre reporting experimentov
|
|
- Textovo opísať dáta
|
|
|
|
Zásobník úloh:
|
|
|
|
- Vyskúšať predtrénovanie pomocou "historických dát".
|
|
|
|
Report 25.02.2022
|
|
|
|
- Prehlaď o jazykových modeloch (BERT, RoBERTa, BART, XLNet, GPT-3) (spracovane poznámky na gite)
|
|
- Prehlaď o time-series GAN
|
|
- Úprava skriptu z peci jsnol -- > csv
|
|
- Skúšanie programu GAN na generovanie obrázkov (na pochopenie ako to funguje)
|
|
- Hľadanie vhodnej implementácie na generovanie dát
|
|
- Rozpracovaná (veľmi malo) analýza datasetu peci
|
|
|
|
Záznam z porady 24.2:
|
|
|
|
- tavby za sebou súvisia kvôli kalibrácii .. x tavieb
|
|
- overiť anomálie v dátach .. ci je problém signifikantný...atď.
|
|
- pýtať sa na druh šrotu, lebo niektoré sú podobne
|
|
- prečo mame rozdelene modely_ nebude stačiť jeden model ?
|
|
- možná kalibrácia , zisti prečo sú horšie dáva ? ci to je kvôli senzorom alebo kedy sa kalibruje atď.
|
|
- čo ma andrii model je lepší ako čo majú v USS
|
|
- model nemá len vedieť povedať najočakávanejšiu hodnôt ale nech vie aj určovať distribúciu.. aby nepovedal že sira vyjde tak a tak ale že vyjde xy s takou pravdepodobnosťou ... dopočítane pravdepodobnosti
|
|
- model s pravdepodobnosťou
|
|
- porovnať ktorý model kedy funguje lepšie
|
|
- prečo je taká vysoká presnosť? simulovanie meracieho pristroja s danou presnosťou pri normálnej distribúcii chyby
|
|
- distribúcia pravdepodobnosti na výstupe
|
|
|
|
Stretnutie 2.2.2022
|
|
|
|
In progress:
|
|
|
|
- Práca na prehľade článkov VAE-GAN
|
|
- na (súkromný) git pridaný náhľad dát a tavný list
|
|
- práca na Pandas skripte
|
|
|
|
Úlohy:
|
|
|
|
- Dokončiť spacy článok
|
|
- Dokončiť prehľad článkov
|
|
- Pripraviť prezentáciu na spoločné stretnutie. Do prezentácie uveď čo si sa dozvedel o metódach VAE a GAN. Vysvetli, ako funguje "autoenkóder".
|
|
- Napísať krátky blog vrátane odkazov nal literatúru o tom ako funguje neurónový jazykový model (BERT, Roberta, BART, GPT-3, XLNet). Ako funguje? Na čo všetko sa používa?
|
|
|
|
|
|
Stretnutie 18.1.2022
|
|
|
|
Úlohy:
|
|
|
|
- [ ] Do git repozitára pridať súbor s podrobným popisom jednotlivých kolóniek v dátovej množine.
|
|
- [-] Do git repozitára pridať skript na načítanie dát do Pandas formátu.
|
|
- [ ] Vypracovať písomný prehľad metód modelovania procesov v oceliarni (kyslíkového konvertora BOS-basic oxygen steelmaking).
|
|
- [x] Nájsť oznam najnovších článkov k vyhľadávaciuemu heslu "gan time series", "vae time series", "sequence modeling,prediction" napísať ku nim komentár (abstrakt z abstraktu) a dať na git.
|
|
- [x] Preformulovať zadanie BP Stromp.
|
|
- [-] Dokončiť draft článok spacy.
|
|
|
|
Zásobník úloh:
|
|
|
|
- [-] Získať prehľad o najnovších metódach NLP - transformers,GAN, VAE a nájsť súvis s modelovaním BOS.
|
|
- [ ] nájsť vhodnú implementáciu gan-vae v pythone pre analýzu časových radov alebo postupnosti.
|
|
|
|
Stretnutie 17.1.2022
|
|
|
|
- Mme dáta z vysokej pece (500GB)
|
|
- Zlepšený konvolučný autoenkóder - dosahuje state-of-the-art.
|
|
- Prečítané niečo o transformers a word2vec.
|
|
|
|
|
|
Stretnutie 9.12.2021
|
|
|
|
- Natrénovaný autoenkóder (feed-forward) pre predikciu celkovej váhy Fe a obsahu S.
|
|
- dát je celkom dosť.
|
|
|
|
Úlohy:
|
|
|
|
- Vyskúšať iné neurónové siete (keras?).
|
|
- Pohľadať dátové množiny, ktoré sú podobné riešenej úlohe. Napr. Open Data.
|
|
|
|
Stretnutie 26.11.2021
|
|
|
|
Dáta z US Steel:
|
|
|
|
- Najprv sa do vysokej pece nasypú suroviny.
|
|
- Z tavby sa postupne odoberajú vzorky a meria sa množstvo jednotlivých vzoriek.
|
|
- Na konci tavby sa robí finálna analýza taveniny.
|
|
- Priebeh procesu závisí od vlastností konkrétnej pece. Sú vlastnosti pece stacionárne? Je možné , že vlastnosti pece sa v čase menia.
|
|
- Cieľom je predpovedať výsledky anaýzy finálnej tavby na základe predošlých vzoriek?
|
|
- Cieľom je predpovedať výsledky nasledujúceho odberu na základe predchádzajúcich?
|
|
- Čo znamená "dobrá tavba"?
|
|
- Čo znamená "dobrá predpoveď výsledkov"?
|
|
- Je dôležitý čas odbery vzorky?
|
|
|
|
Zásobník úloh:
|
|
|
|
- Formulovať problém ako "predikcia časových radov" - sequence prediction.
|
|
- Nápad: The analysis of time series : an introduction / Chris Chatfield. 5th ed. Boca Raton : Chapman and Hall, 1996. xii, 283 s. (Chapman & Hall texts in statistical science series). - ISBN 0-412-71640-2 (brož.).
|
|
- Prezrieť literatúru a zistiť najnovšie metódy na predikciu.
|
|
- Navrhnúť metódu konverzie dát na vektor príznakov. Sú potrebné binárne vektory?
|
|
- Navrhnúť metódu výpočtu chybovej funkcie - asi euklidovská vzdialenosť medzi výsledkov a očakávaním.
|
|
- Vyskúšať navrhnúť rekurentnú neurónovú sieť - RNN, GRU, LSTM.
|
|
- Nápad: Transformer network, Generative Adversarial Network.
|
|
- Nápad: Vyskúšať klasické štatistické modely (scikit-learn) - napr. aproximácia polynómom, alebo SVM.
|
|
|
|
|
|
Stretnutie 1.10.
|
|
|
|
Stav:
|
|
|
|
- Štúdium základov neurónových sietí
|
|
- Úvodné stretnutie s US Steel
|
|
|
|
Úlohy:
|
|
|
|
- Vypracovať prehľad aktuálnych metód grafových neurónových sietí
|
|
- Nájsť a vyskúšať toolkit na GNN.
|
|
- Vytvoriť pracovný repozitár na GITe.
|
|
- Naštudovať dáta z US Steel.
|
|
- Publikovať diplomovú prácu.
|
|
|
|
|
|
|
|
## Diplomová práca 2021
|
|
|
|
- [CRZP](https://opac.crzp.sk/?fn=detailBiblioForm&sid=ECC3D3F0B3159C4F3216E2027BE4)
|
|
- [Zdrojové kódy](https://git.kemt.fei.tuke.sk/mh496vd/diplomovka/)
|
|
|
|
Názov diplomovej práce: Neurónová morfologická anotácia slovenského jazyka
|
|
|
|
1. Vysvetlite, ako funguje neurónová morfologická anotácia v knižnici Spacy. Vysvetlite, ako funguje predtrénovanie v knižnici Spacy.
|
|
2. Pripravte slovenské trénovacie dáta vo vhodnom formáte a natrénujte základný model morfologickej anotácie pomocou knižnice Spacy.
|
|
3. Pripravte model pre morfologickú anotáciu s pomocou predtrénovania.
|
|
4. Vyhodnoťte presnosť značkovania modelov vo viacerých experimentoch a navrhnite možné zlepšenia.
|
|
|
|
## Diplomový projekt 2 2020
|
|
|
|
Zásobník úloh:
|
|
|
|
- skúsiť prezentovať na lokálnej konferencii, (Data, Znalosti and WIKT) alebo fakultný zborník (krátka verzia diplomovky).
|
|
- Využiť korpus Multext East pri trénovaní. Vytvoriť mapovanie Multext Tagov na SNK Tagy.
|
|
- vykonať a opísať viac experinentov s rôznymi nastaveniami.
|
|
|
|
Stretnutie 12.2.
|
|
|
|
Stav:
|
|
|
|
- Práca na texte
|
|
|
|
Do ďalšieho stretnutia:
|
|
|
|
- Opraviť text podľa ústnej spätnej väzby
|
|
- Vysvetlite čo je to morfologická anotácia.
|
|
- Vystvetlite ako sa robí? Ako funguje spacy neurónová sieť?
|
|
- atď. predošlé textové úlohy z 30.10. 2020
|
|
|
|
|
|
Stretnutie 25.1.2021
|
|
|
|
Stav:
|
|
|
|
- Urobená prezentácia, spracované experimenty do tabuľky.
|
|
|
|
Do ďalšieho stretnutia:
|
|
|
|
- Pracovať na súvislom texte.
|
|
|
|
Virtuálne stretnutie 6.11.2020
|
|
|
|
Stav:
|
|
|
|
- Prečítané (podrobne) 2 články a urobené poznámky. Poznánky sú na GITe.
|
|
- Dorobené ďalšie experimenty.
|
|
|
|
Úlohy do ďalšieho stretnutia:
|
|
|
|
- Pokračovať v otvorených úlohách.
|
|
|
|
|
|
Virtuálne stretnutie 30.10.2020
|
|
|
|
Stav:
|
|
|
|
- Súbory sú na GIte
|
|
- Vykonané experimenty, Výsledky experimentov sú v tabuľke
|
|
- Návod na spustenie
|
|
- Vyriešenie technických problémov. Je k dispozicíí Conda prostredie.
|
|
|
|
Úlohy na ďalšie stretnutie:
|
|
|
|
- Preštudovať literatúru na tému "pretrain" a "word embedding"
|
|
- [Healthcare NER Models Using Language Model Pretraining](http://ceur-ws.org/Vol-2551/paper-04.pdf)
|
|
- [Design and implementation of an open source Greek POS Tagger and Entity Recognizer using spaCy](https://ieeexplore.ieee.org/abstract/document/8909591)
|
|
- https://arxiv.org/abs/1909.00505
|
|
- https://arxiv.org/abs/1607.04606
|
|
- LSTM, recurrent neural network,
|
|
- Urobte si poznámky z viacerých čnánkov, poznačte si zdroj a čo ste sa dozvedeli.
|
|
- Vykonať viacero experimentov s pretrénovaním - rôzne modely, rôzne veľkosti adaptačných dát a zostaviť tabuľku
|
|
- Opísať pretrénovanie, zhrnúť vplyv pretrénovania na trénovanie v krátkom článku cca 10 strán.
|
|
|
|
|
|
Virtuálne stretnutie 8.10.2020
|
|
|
|
Stav:
|
|
- Podarilo sa vykonať pretrénovanie aj trénovanie, prvé výsledky experimentov.
|
|
- pretrénovanie funguje na GPU, použila sa verzia spacy 2.2, trénovanie na IDOC
|
|
- trénovanie ide lepšie na CPU
|
|
- vyskytol sa problém že nevie alokovať viac ako 2GB RAM
|
|
- 200 iterácií pretrénovania, 4000 riadkov viet
|
|
|
|
Úlohy do ďalšieho stretnutia:
|
|
- Dať zdrojáky na GIT
|
|
- Urobiť porovnanie voči presnosti bez pretrain
|
|
- Výsledky dajte do tabuľky - aké parametre ste použili pri trénovaní a pretrénovaí?
|
|
- experimenty si poznačte do skriptu aby sa dali zopakovať
|
|
- Do článku (do súboru README na GIte) presne opíšte nastavenie experimentu - parametre, dáta a spôsob overenia, aspoň rozpracovať.
|
|
- Začnite spisovať teoretickú časť článku, aspoň rozpracovať.
|
|
|
|
Stretnutie 25.9.2020
|
|
|
|
Stav:
|
|
- chyba pri použití príkazu pretrain, ktorá sa objavila s novou verziou Spacy
|
|
|
|
Úlohy do ďalšieho stretnutia:
|
|
- pokračovať so starou verziou Spacy (2.2)
|
|
|
|
Návrhy na zlepšenie:
|
|
- Použiť viac textových dát.
|
|
|
|
Zvážiť publikovanie na: http://conf.uni-obuda.hu/sami2021/index.html
|
|
- najprv napísať po slovensky, potom sa to preloží
|
|
- opísať experimenty
|
|
|
|
## Diplomový projekt 2020
|
|
|
|
Zdroje:
|
|
|
|
- [Jazykové zdroje](/topics/resources)
|
|
|
|
|
|
|
|
Doplnenie podpory morfologického značkovania slovenského jazyka do nlp frameworku (spacy alebo flair)
|
|
|
|
- Úlohy na tento semester:
|
|
- Pozrieť jazykové zdroje z https://www.clarin.eu/resource-families/manually-annotated-corpora (MultextEast)
|
|
- Oboznámte sa so sadou morfologických značiek Universal Dependencies https://universaldependencies.org/sk/index.html
|
|
- Oboznámte sa so sadou SNK https://korpus.sk/morpho.html
|
|
- Natrénovať Spacy Model s POS a s pretrénovaním
|
|
|
|
Stretnutie 23.6.2020:
|
|
|
|
- Výsledok: [Skript na trénovanie Spacy POS](https://git.kemt.fei.tuke.sk/mh496vd/diplomovka/src/branch/master/script.sh)
|
|
|
|
Stretnutie 12.6.2020:
|
|
|
|
- Pretrénovanie Fasttext a trénovanie POS Spacy modelu - ešte treba vylepšiť presnosť
|
|
|
|
K zápočtu:
|
|
|
|
- Finálny okomentovaný skript pre trénovanie POS modelu podľa Slovak Treebank s pretrénovaním Fasttext.
|
|
- Ak sa dá tak pri trénovaní využite GPU
|
|
- Zistite výslednú presnosť, mala by byť nad 80 percent.
|
|
- Porovnajte s presnosťou bez pretrénovania.
|
|
|
|
|
|
|
|
|
|
Virtuálne stretnutie 15.5.2020:
|
|
|
|
- Spustenie exitujúceho skriptu pre trénovanie POS modelu z repozitára spacy-skmodel, problém nastal pri NER dátach.
|
|
- Vytvorený [repozitár](https://git.kemt.fei.tuke.sk/mh496vd/diplomovka)
|
|
|
|
Nové úlohy:
|
|
|
|
- Podrobne preštudovať a realizovať [spacy pretrain](https://spacy.io/api/cli#pretrain)
|
|
- [Blog o Spacy pretrain](https://explosion.ai/blog/spacy-v2-1)
|
|
|
|
|
|
|
|
Revízia 9.4.2020:
|
|
|
|
Report o doterajšej práci:
|
|
|
|
- naštudovanie Fasttext
|
|
- implementácia do Spacy
|
|
- úprava modelu v spacy na rozpoznanie jazyka
|
|
- snaha o spacy-udpipe pre non-English text
|
|
|
|
Nové úlohy:
|
|
|
|
- pridajte zdrojový text a odkaz na "implementáciu".
|
|
- natrénujte model podľa https://git.kemt.fei.tuke.sk/dano/spacy-skmodel
|
|
- skúste pridať "word-embeddingy" z fasttext do trénovania.
|
|
- vyhodnoťte natrénovaný model - zistite presnosť značkovania. Aký vplyv majú embeddingy na presnosť?
|
|
- porozmýšľajte ako sa dá presnosť zlepšiť.
|
|
|
|
|
|
Stretnutie 5.3.2020:
|
|
|
|
Úlohy na ďalšie stretnutie:
|
|
|
|
- zobrať alebo vytvoriť fasttext model
|
|
- pozrieť sa na [spacy pretrain](https://spacy.io/api/cli) - tam sa bude dať využiť fasttext model
|
|
- vložiť ho do spacy modelu pomocou `spacy pretrain`
|
|
- pozrieť si http://nl.ijs.si/ME/V4/ morfosyntaktická anotácia MULTEXT
|
|
- porozmýšľať ako využiť korpus "MultextEast" - potrebné vytvoriť mapovanie značiek na SNK Tagset
|
|
|
|
Poznámka:
|
|
|
|
- Aktivovaná Omega
|
|
- Pozrieť sa na https://git.kemt.fei.tuke.sk/dano/spacy-skmodel/src/branch/master/sources/slovak-treebank , aktivovaný prístup
|
|
- už existuje mapovanie [Universal Dependencie na SNK tagset](https://github.com/explosion/spaCy/blob/master/spacy/lang/sk/tag_map.py)
|
|
|
|
|
|
Stretnutie: 20.2.2020:
|
|
|
|
Úlohy na ďalšie stretnutie:
|
|
|
|
- Pozrieť https://spacy.io/usage/training#tagger-parser
|
|
- Pozrieť si čo je word embedding - word2vec, fasttext, glove
|
|
- Nájsť spôsob ako využiť existujúci model word embedding pri trénovaní https://fasttext.cc/docs/en/pretrained-vectors.html
|
|
- Ako natrénovať Spacy POS model?
|
|
|
|
|
|
|
|
|
|
|
|
|
|
## Tímový projekt 2019
|
|
|
|
Projektové stránky:
|
|
|
|
- [Spracovanie prirodzeného jazyka](/topics/nlp)
|
|
- [Python](/topics/python)
|
|
- [Podpora slovenčiny v knižnici Spacy](/topics/spacy)
|
|
|
|
|
|
[Spacy tutoriál](./timovy_projekt)
|
|
|
|
- Vypracovať tutoriál pre prácu s nástrojom Spacy pre úlohu zisťovania gramatických značiek (part-of-speech). Súčasťou tutoriálu by mali byť aj odkazy na relevantné zdroje (odborné članky, min. 4).
|