Update sk1/compressor.c

This commit is contained in:
Yurii Chechur 2024-12-24 20:02:31 +00:00
parent 58666172f4
commit eba5bf1f39

View File

@ -22,21 +22,18 @@ int compress_2(const char* input_file_name, const char* output_file_name) {
unsigned char current_byte, previous_byte;
size_t count = 0;
// Читаємо перший байт
if (fread(&previous_byte, 1, 1, infile) != 1) {
fclose(infile);
fclose(outfile);
return 0; // Порожній файл
}
count = 1; // Ініціалізуємо лічильник
count = 1;
// Читаємо залишок файлу
while (fread(&current_byte, 1, 1, infile) == 1) {
if (current_byte == previous_byte && count < 255) {
count++; // Збільшуємо лічильник
count++;
} else {
// Записуємо попередній символ і його кількість
fwrite(&previous_byte, 1, 1, outfile);
fwrite(&count, 1, 1, outfile);
previous_byte = current_byte;
@ -44,14 +41,13 @@ int compress_2(const char* input_file_name, const char* output_file_name) {
}
}
// Записуємо останній символ
fwrite(&previous_byte, 1, 1, outfile);
fwrite(&count, 1, 1, outfile);
fclose(infile);
fclose(outfile);
return 1; // Повертаємо успішний результат
return 1;
}
int decompress_2(const char* input_file_name, const char* output_file_name) {
@ -69,11 +65,16 @@ int decompress_2(const char* input_file_name, const char* output_file_name) {
}
unsigned char current_byte;
size_t count;
unsigned char count;
// Декомпресія файлу
while (fread(&current_byte, 1, 1, infile) == 1) {
fread(&count, 1, 1, infile);
if (fread(&count, 1, 1, infile) != 1) {
perror("Malformed input file");
fclose(infile);
fclose(outfile);
return -1;
}
for (size_t i = 0; i < count; i++) {
fwrite(&current_byte, 1, 1, outfile);
}
@ -82,10 +83,9 @@ int decompress_2(const char* input_file_name, const char* output_file_name) {
fclose(infile);
fclose(outfile);
return 1; // Повертаємо успішний результат
return 1;
}
// --- Алгоритм Хаффмана (Huffman Coding) ---
typedef struct Node {
@ -94,31 +94,31 @@ typedef struct Node {
struct Node *left, *right;
} Node;
// Структура для кодів Хаффмана
typedef struct {
unsigned char symbol;
char *code;
} HuffmanCode;
// Функція для порівняння вузлів для використання в черзі
int compare_nodes(const void *a, const void *b) {
return ((Node*)a)->frequency - ((Node*)b)->frequency;
return (*(Node**)a)->frequency - (*(Node**)b)->frequency;
}
// Створення дерева Хаффмана
Node* create_huffman_tree(unsigned char *data, size_t size) {
size_t freq[256] = {0};
for (size_t i = 0; i < size; i++) {
freq[data[i]]++;
}
// Створюємо список вузлів
Node *nodes[256];
size_t node_count = 0;
for (int i = 0; i < 256; i++) {
if (freq[i] > 0) {
nodes[node_count] = malloc(sizeof(Node));
if (!nodes[node_count]) {
perror("Memory allocation failed");
return NULL;
}
nodes[node_count]->symbol = (unsigned char)i;
nodes[node_count]->frequency = freq[i];
nodes[node_count]->left = nodes[node_count]->right = NULL;
@ -126,32 +126,31 @@ Node* create_huffman_tree(unsigned char *data, size_t size) {
}
}
// Сортуємо вузли по частоті
qsort(nodes, node_count, sizeof(Node*), compare_nodes);
// Побудова дерева
while (node_count > 1) {
qsort(nodes, node_count, sizeof(Node*), compare_nodes);
Node* left = nodes[0];
Node* right = nodes[1];
Node* parent = malloc(sizeof(Node));
if (!parent) {
perror("Memory allocation failed");
return NULL;
}
parent->symbol = 0;
parent->frequency = left->frequency + right->frequency;
parent->left = left;
parent->right = right;
// Зміщуємо вузли в черзі
memmove(nodes, nodes + 2, (node_count - 2) * sizeof(Node*));
nodes[node_count - 2] = parent;
node_count--;
qsort(nodes, node_count, sizeof(Node*), compare_nodes);
}
return nodes[0]; // Повертаємо корінь дерева
return nodes[0];
}
// Функція для рекурсивного запису бітових кодів з дерева Хаффмана
void generate_huffman_codes(Node* root, HuffmanCode* codes, char* current_code, int depth) {
if (!root) return;
@ -159,16 +158,72 @@ void generate_huffman_codes(Node* root, HuffmanCode* codes, char* current_code,
current_code[depth] = '\0';
codes[root->symbol].symbol = root->symbol;
codes[root->symbol].code = strdup(current_code);
return;
}
current_code[depth] = '0';
generate_huffman_codes(root->left, codes, current_code, depth + 1);
current_code[depth] = '1';
generate_huffman_codes(root->right, codes, current_code, depth + 1);
}
// Функція для стиснення за допомогою Хаффмана
void serialize_huffman_tree(Node* root, FILE* outfile) {
if (!root) return;
if (root->left == NULL && root->right == NULL) {
fputc('L', outfile);
fputc(root->symbol, outfile);
} else {
fputc('I', outfile);
serialize_huffman_tree(root->left, outfile);
serialize_huffman_tree(root->right, outfile);
}
}
Node* rebuild_huffman_tree(unsigned char* tree_data, size_t size) {
(void)size; // Позначаємо параметр як тимчасово невикористаний
size_t index = 0;
Node* build_tree_recursively(unsigned char* data, size_t* index) {
if (data[*index] == 'L') { // Лист (Leaf)
(*index)++;
Node* leaf = malloc(sizeof(Node));
if (!leaf) {
perror("Memory allocation failed");
return NULL;
}
leaf->symbol = data[*index];
leaf->frequency = 0; // частота не потрібна для декомпресії
leaf->left = leaf->right = NULL;
(*index)++;
return leaf;
} else if (data[*index] == 'I') { // Вузол (Internal)
(*index)++;
Node* internal = malloc(sizeof(Node));
if (!internal) {
perror("Memory allocation failed");
return NULL;
}
internal->symbol = 0; // внутрішні вузли не мають символів
internal->frequency = 0;
internal->left = build_tree_recursively(data, index);
internal->right = build_tree_recursively(data, index);
return internal;
}
return NULL;
}
return build_tree_recursively(tree_data, &index);
}
void free_huffman_tree(Node* root) {
if (!root) return;
free_huffman_tree(root->left);
free_huffman_tree(root->right);
free(root);
}
int compress_1(const char* input_file_name, const char* output_file_name) {
FILE *infile = fopen(input_file_name, "rb");
if (!infile) {
@ -183,68 +238,53 @@ int compress_1(const char* input_file_name, const char* output_file_name) {
unsigned char* data = malloc(file_size);
if (!data) {
fclose(infile);
perror("Memory allocation failed");
return -1;
}
fread(data, 1, file_size, infile);
fclose(infile);
// Створюємо дерево Хаффмана
Node* root = create_huffman_tree(data, file_size);
// Генерація кодів Хаффмана
HuffmanCode codes[256];
for (int i = 0; i < 256; i++) {
codes[i].code = NULL;
}
char current_code[256];
generate_huffman_codes(root, codes, current_code, 0);
// Стиснення даних
FILE *outfile = fopen(output_file_name, "wb");
if (!outfile) {
if (!root) {
free(data);
return -1;
}
HuffmanCode codes[256] = {0};
char current_code[256];
generate_huffman_codes(root, codes, current_code, 0);
FILE *outfile = fopen(output_file_name, "wb");
if (!outfile) {
free(data);
free_huffman_tree(root);
return -1;
}
serialize_huffman_tree(root, outfile);
for (size_t i = 0; i < file_size; i++) {
unsigned char symbol = data[i];
const char* code = codes[symbol].code;
const char* code = codes[data[i]].code;
for (size_t j = 0; code[j] != '\0'; j++) {
// Записуємо біт в файл
fputc(code[j] == '1' ? 1 : 0, outfile);
fputc(code[j], outfile);
}
}
fclose(outfile);
free(data);
free_huffman_tree(root);
return 1; // Повертаємо успішний результат
}
// Функція для декомпресії за допомогою Хаффмана
int decompress_1(const char* input_file_name, const char* output_file_name) {
FILE* input = fopen(input_file_name, "rb");
if (!input) return -1;
// Načítanie kódovacej tabuľky a ďalších informácií
// (toto bude závisieť od vašej implementácie, kde ukladáte tieto informácie)
HuffmanTree* tree = load_huffman_tree(input);
if (!tree) return -1;
FILE* output = fopen(output_file_name, "wb");
if (!output) {
fclose(input);
return -1;
for (int i = 0; i < 256; i++) {
free(codes[i].code);
}
// Dekódovanie dát a zapisovanie do výstupného súboru
decode_huffman(input, output, tree);
fclose(input);
fclose(output);
return 0;
return 1;
}
// Декомпресія (приклад потребує уточнень залежно від специфіки формату)
int decompress_1(const char* input_file_name, const char* output_file_name) {
(void)input_file_name;
(void)output_file_name;
return -1; // Поки що не реалізовано.
}