Update sk1/compressor.c

This commit is contained in:
Yurii Chechur 2024-12-26 15:59:08 +00:00
parent 2f587f253b
commit 70c293a075

View File

@ -1,291 +1,250 @@
#include "compressor.h"
#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <string.h>
#include <stdlib.h>
// --- Алгоритм Run-Length Encoding (RLE) ---
#define WINDOW_SIZE 4096
#define LOOKAHEAD_BUFFER_SIZE 18
int compress_2(const char* input_file_name, const char* output_file_name) {
FILE *infile = fopen(input_file_name, "rb");
if (!infile) {
typedef struct {
uint16_t offset;
uint8_t length;
uint8_t next_char;
} LZ77Triple;
int lz77_compress(const char *input_filename, const char *output_filename) {
// Open the input file in binary read mode
FILE *input_file = fopen(input_filename, "rb");
if (!input_file) {
perror("Error opening input file");
return -1;
}
FILE *outfile = fopen(output_file_name, "wb");
if (!outfile) {
// Open the output file in binary write mode
FILE *output_file = fopen(output_filename, "wb");
if (!output_file) {
perror("Error opening output file");
fclose(infile);
return -1;
fclose(input_file);
return -2;
}
unsigned char current_byte, previous_byte;
size_t count = 0;
if (fread(&previous_byte, 1, 1, infile) != 1) {
fclose(infile);
fclose(outfile);
return 0; // Порожній файл
uint8_t *window = (uint8_t *)malloc(WINDOW_SIZE + LOOKAHEAD_BUFFER_SIZE);
if (!window) {
perror("Memory allocation failed");
fclose(input_file);
fclose(output_file);
return -3;
}
count = 1;
size_t window_start = 0;
size_t lookahead_start = 0;
size_t bytes_read;
while (fread(&current_byte, 1, 1, infile) == 1) {
// Initialize the window with data from the input file
bytes_read = fread(window + WINDOW_SIZE, 1, LOOKAHEAD_BUFFER_SIZE, input_file);
while (bytes_read > 0) {
size_t best_match_offset = 0;
size_t best_match_length = 0;
// Search for the best match within the sliding window
for (size_t i = window_start; i < WINDOW_SIZE + lookahead_start; i++) {
size_t match_length = 0;
while (match_length < bytes_read &&
window[i + match_length] == window[WINDOW_SIZE + match_length]) {
match_length++;
if (match_length >= LOOKAHEAD_BUFFER_SIZE) {
break;
}
}
if (match_length > best_match_length) {
best_match_length = match_length;
best_match_offset = WINDOW_SIZE + lookahead_start - i;
}
}
// Create a triple and write it to the output file
LZ77Triple triple;
triple.offset = (uint16_t)best_match_offset;
triple.length = (uint8_t)best_match_length;
triple.next_char = window[WINDOW_SIZE + best_match_length];
// Write the triple to the output file
fwrite(&triple, sizeof(LZ77Triple), 1, output_file);
// Slide the window
window_start = (window_start + best_match_length + 1) % WINDOW_SIZE;
lookahead_start = (lookahead_start + best_match_length + 1) % LOOKAHEAD_BUFFER_SIZE;
// Read new byte into the lookahead buffer
bytes_read = fread(window + WINDOW_SIZE, 1, LOOKAHEAD_BUFFER_SIZE - lookahead_start, input_file);
}
// Cleanup and close files
fclose(input_file);
fclose(output_file);
free(window);
return 0;
}
int lz77_decompress(const char *input_filename, const char *output_filename) {
FILE *input = fopen(input_filename, "rb");
FILE *output = fopen(output_filename, "wb");
if (!input || !output) {
if (input) fclose(input);
if (output) fclose(output);
return -1; // Помилка відкриття файлу
}
size_t buffer_size = 4096; // Максимальний розмір вікна
unsigned char *window = malloc(buffer_size);
size_t window_size = 0; // Розмір заповненої частини вікна
size_t window_pos = 0; // Поточна позиція в межах вікна
if (!window) {
fclose(input);
fclose(output);
return -1; // Помилка пам'яті
}
while (!feof(input)) {
unsigned char flag;
if (fread(&flag, 1, 1, input) != 1) break;
for (int i = 0; i < 8 && !feof(input); i++) {
if (flag & (1 << i)) { // Літеральний символ
unsigned char literal;
if (fread(&literal, 1, 1, input) != 1) break;
fputc(literal, output);
// Додати символ у вікно
window[window_pos] = literal;
window_pos = (window_pos + 1) % buffer_size;
if (window_size < buffer_size) window_size++;
} else { // Посилання
unsigned short offset_length;
if (fread(&offset_length, 2, 1, input) != 1) break;
size_t offset = offset_length >> 4;
size_t length = (offset_length & 0xF) + 3;
for (size_t j = 0; j < length; j++) {
unsigned char byte = window[(window_pos - offset + buffer_size) % buffer_size];
fputc(byte, output);
// Додати байт у вікно
window[window_pos] = byte;
window_pos = (window_pos + 1) % buffer_size;
if (window_size < buffer_size) window_size++;
}
}
}
}
free(window);
fclose(input);
fclose(output);
return 0; // Успішна декомпресія
}
void rle_compress(const char *input_filename, const char *output_filename) {
FILE *input_file = fopen(input_filename, "rb");
if (!input_file) {
perror("Error opening input file");
return;
}
FILE *output_file = fopen(output_filename, "wb");
if (!output_file) {
perror("Error opening output file");
fclose(input_file);
return;
}
uint8_t current_byte, previous_byte;
uint8_t count = 1;
if (fread(&previous_byte, 1, 1, input_file) != 1) {
printf("Input file is empty or read error occurred.\n");
fclose(input_file);
fclose(output_file);
return;
}
while (fread(&current_byte, 1, 1, input_file) == 1) {
if (current_byte == previous_byte && count < 255) {
count++;
} else {
fwrite(&previous_byte, 1, 1, outfile);
fwrite(&count, 1, 1, outfile);
fwrite(&previous_byte, 1, 1, output_file);
fwrite(&count, 1, 1, output_file);
printf("Writing byte: %c with count: %d\n", previous_byte, count);
previous_byte = current_byte;
count = 1;
}
}
fwrite(&previous_byte, 1, 1, outfile);
fwrite(&count, 1, 1, outfile);
fwrite(&previous_byte, 1, 1, output_file);
fwrite(&count, 1, 1, output_file);
printf("Writing byte: %c with count: %d\n", previous_byte, count);
fclose(infile);
fclose(outfile);
return 1;
fclose(input_file);
fclose(output_file);
}
int decompress_2(const char* input_file_name, const char* output_file_name) {
FILE *infile = fopen(input_file_name, "rb");
if (!infile) {
int rle_decompress(const char *input_filename, const char *output_filename) {
// Open the input file in binary read mode
FILE *input_file = fopen(input_filename, "rb");
if (!input_file) {
perror("Error opening input file");
return -1;
}
FILE *outfile = fopen(output_file_name, "wb");
if (!outfile) {
// Open the output file in binary write mode
FILE *output_file = fopen(output_filename, "wb");
if (!output_file) {
perror("Error opening output file");
fclose(infile);
return -1;
fclose(input_file);
return -2;
}
unsigned char current_byte;
unsigned char count;
uint8_t byte;
uint8_t count;
size_t decompressed_size = 0;
while (fread(&current_byte, 1, 1, infile) == 1) {
if (fread(&count, 1, 1, infile) != 1) {
perror("Malformed input file");
fclose(infile);
fclose(outfile);
return -1;
// Read [byte, count] pairs from the input file
while (fread(&byte, 1, 1, input_file) == 1) {
if (fread(&count, 1, 1, input_file) != 1) {
// Handle malformed input file
fprintf(stderr, "Error: Malformed input file\n");
fclose(input_file);
fclose(output_file);
return -3;
}
for (size_t i = 0; i < count; i++) {
fwrite(&current_byte, 1, 1, outfile);
// Write 'count' occurrences of 'byte' to the output file
for (uint8_t i = 0; i < count; i++) {
if (fwrite(&byte, 1, 1, output_file) != 1) {
perror("Error writing to output file");
fclose(input_file);
fclose(output_file);
return -4;
}
decompressed_size++;
}
}
fclose(infile);
fclose(outfile);
// Clean up and close files
fclose(input_file);
fclose(output_file);
return 1;
return (int)decompressed_size;
}
// --- Алгоритм Хаффмана (Huffman Coding) ---
typedef struct Node {
unsigned char symbol;
size_t frequency;
struct Node *left, *right;
} Node;
typedef struct {
unsigned char symbol;
char *code;
} HuffmanCode;
int compare_nodes(const void *a, const void *b) {
return (*(Node**)a)->frequency - (*(Node**)b)->frequency;
}
Node* create_huffman_tree(unsigned char *data, size_t size) {
size_t freq[256] = {0};
for (size_t i = 0; i < size; i++) {
freq[data[i]]++;
}
Node *nodes[256];
size_t node_count = 0;
for (int i = 0; i < 256; i++) {
if (freq[i] > 0) {
nodes[node_count] = malloc(sizeof(Node));
if (!nodes[node_count]) {
perror("Memory allocation failed");
return NULL;
}
nodes[node_count]->symbol = (unsigned char)i;
nodes[node_count]->frequency = freq[i];
nodes[node_count]->left = nodes[node_count]->right = NULL;
node_count++;
}
}
while (node_count > 1) {
qsort(nodes, node_count, sizeof(Node*), compare_nodes);
Node* left = nodes[0];
Node* right = nodes[1];
Node* parent = malloc(sizeof(Node));
if (!parent) {
perror("Memory allocation failed");
return NULL;
}
parent->symbol = 0;
parent->frequency = left->frequency + right->frequency;
parent->left = left;
parent->right = right;
memmove(nodes, nodes + 2, (node_count - 2) * sizeof(Node*));
nodes[node_count - 2] = parent;
node_count--;
}
return nodes[0];
}
void generate_huffman_codes(Node* root, HuffmanCode* codes, char* current_code, int depth) {
if (!root) return;
if (root->left == NULL && root->right == NULL) {
current_code[depth] = '\0';
codes[root->symbol].symbol = root->symbol;
codes[root->symbol].code = strdup(current_code);
return;
}
current_code[depth] = '0';
generate_huffman_codes(root->left, codes, current_code, depth + 1);
current_code[depth] = '1';
generate_huffman_codes(root->right, codes, current_code, depth + 1);
}
void serialize_huffman_tree(Node* root, FILE* outfile) {
if (!root) return;
if (root->left == NULL && root->right == NULL) {
fputc('L', outfile);
fputc(root->symbol, outfile);
} else {
fputc('I', outfile);
serialize_huffman_tree(root->left, outfile);
serialize_huffman_tree(root->right, outfile);
}
}
Node* rebuild_huffman_tree(unsigned char* tree_data, size_t size) {
(void)size; // Позначаємо параметр як тимчасово невикористаний
size_t index = 0;
Node* build_tree_recursively(unsigned char* data, size_t* index) {
if (data[*index] == 'L') { // Лист (Leaf)
(*index)++;
Node* leaf = malloc(sizeof(Node));
if (!leaf) {
perror("Memory allocation failed");
return NULL;
}
leaf->symbol = data[*index];
leaf->frequency = 0; // частота не потрібна для декомпресії
leaf->left = leaf->right = NULL;
(*index)++;
return leaf;
} else if (data[*index] == 'I') { // Вузол (Internal)
(*index)++;
Node* internal = malloc(sizeof(Node));
if (!internal) {
perror("Memory allocation failed");
return NULL;
}
internal->symbol = 0; // внутрішні вузли не мають символів
internal->frequency = 0;
internal->left = build_tree_recursively(data, index);
internal->right = build_tree_recursively(data, index);
return internal;
}
return NULL;
}
return build_tree_recursively(tree_data, &index);
}
void free_huffman_tree(Node* root) {
if (!root) return;
free_huffman_tree(root->left);
free_huffman_tree(root->right);
free(root);
}
int compress_1(const char* input_file_name, const char* output_file_name) {
FILE *infile = fopen(input_file_name, "rb");
if (!infile) {
perror("Error opening input file");
return -1;
}
fseek(infile, 0, SEEK_END);
size_t file_size = ftell(infile);
fseek(infile, 0, SEEK_SET);
unsigned char* data = malloc(file_size);
if (!data) {
fclose(infile);
perror("Memory allocation failed");
return -1;
}
fread(data, 1, file_size, infile);
fclose(infile);
Node* root = create_huffman_tree(data, file_size);
if (!root) {
free(data);
return -1;
}
HuffmanCode codes[256] = {0};
char current_code[256];
generate_huffman_codes(root, codes, current_code, 0);
FILE *outfile = fopen(output_file_name, "wb");
if (!outfile) {
free(data);
free_huffman_tree(root);
return -1;
}
serialize_huffman_tree(root, outfile);
for (size_t i = 0; i < file_size; i++) {
const char* code = codes[data[i]].code;
for (size_t j = 0; code[j] != '\0'; j++) {
fputc(code[j], outfile);
}
}
fclose(outfile);
free(data);
free_huffman_tree(root);
for (int i = 0; i < 256; i++) {
free(codes[i].code);
}
return 1;
}
// Декомпресія (приклад потребує уточнень залежно від специфіки формату)
int decompress_1(const char* input_file_name, const char* output_file_name) {
(void)input_file_name;
(void)output_file_name;
return -1; // Поки що не реалізовано.
}