.. | ||
README.md |
title | published | taxonomy | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Ondrej Megela | true |
|
Ondrej Megela
Začiatok štúdia: 2018
Súvisiace stránky:
- Oleh Bilykh - question answering
- Lukáš Pokrývka - paralelné trénovanie
- Question Answering - interný projekt
- Matej Čarňanský (BERT)
Diplomový projekt 1 2022
Cieľ:
- Vytvoriť a vyhodnotiť generatívny model slovenského jazyka.
- Navrhnúť a vytvoriť overovaciu množinu pre slovenské generatívne modely.
Stretnutie 29.6.
- Vyskúšané dosadenie slovenského GPT modelu do kódu patil-suraj. Nefunguje - nepasuje konfigurácia.
Stretnutie 8.4.
Prezreté sú tri repozitáre. kompatibilné s HF Transformers
https://github.com/p208p2002/Transformer-QG-on-SQuAD#seq2seq-lm
- Používa modely GPT-2, BART,T5, upravený „BERT“
- vstup ide odsek + zvýraznená odpoveď pomocou tokenu [HL]
Haystack deepset – QG pipeline
- Postup: (https://haystack.deepset.ai/tutorials/question-generation)
- kompatibilný s HF Transformers
- https://github.com/deepset-ai/haystack#mortar_board-tutorials
- https://www.deepset.ai/blog/generate-questions-automatically-for-faster-annotation
https://github.com/patil-suraj/question_generation
- Využíva 2 formáty vstupu:
- Oddelenie odpovede pomocou SEP, odpoveď je osobitne
- 42
[SEP]
42 is the answer to life, the universe and everything. Vyznačenie odpovede pomocou HL priamo v kontexte. <hl>
42<hl>
is the answer to life, the universe and everything.
- 42
3 možnosti definície úlohy generovanie otázok :
- QG – vstup je kontext a odpoveď, výstup je otázka
- Multitask QA- QG: Deje sa vo viacerých krokoch: vyhľadanie odpovede (zaujímavej časti) v texte, generovanie otazky na zaklade odpovede, spätné vyhľadanie odpovede
- End-to-End QG – Generovanie otázok len na zaklade kontextu, vstup je kontext, výstup je otázka.
Úlohy:
- Začneme s prístupom "End-To-End" - generovanie otázok na základe zadaného odseku.
- Rozbehnite skript, ktorý naučí generatívny model generovať otázky na základe zadaného odseku. Ako vstup použite sk-quad.
Zásobník úloh:
- Navrhnite a implementujte spôsob vyhľadanie zaujímavej časti odseku - kandidáta na možnú odpoveď.
11.3.
- Vyskúšaný GPT na cloab, zatiaľ nefunguje kvôli pamäti.
Možné spôsoby využitia generatívnych modelov:
- mnli - multi natural language inference - textual entailment and contradiction, zero shot classification
- strojový preklad
- sumarizácia, conditional generation - asi nepotrebuje finetinung
- konverzačné systémy - generovanie odpovede na otázku
- generovanie otázok ku zadanému odseku (reverse squad)
Možné spôsoby vytvorenia overovacej množiny:
- Využitie slovenského squadu pre úlohu generovania otázok.
- Strojový preklad existujúceho jazykového zdroja do slovenčiny.
- Pokúsime sa vytvoriť vlastnú dátovú množinu od začiatku. Pre ktorú úlohu?
- Na overenie použijeme existujúci paralelný korpus - to si vyžaduje fine-tuning pre strojový preklad.
- Strojovo vytvoríme overovaciu databázu pre úlohu sumarizácie. Zoberieme novinové články alebo vedecké články alebo záverečné práce ktoré majú uvedený abstrakt.
Úlohy:
- vyskúšať menší GPT model
- Zistit a stručne opísať, ako funguje automatické generovanie otázok vo formáte squad. Ako neurónka berie do úvahy odpoveď? Zisitiť ako vyznačiť zaujímavé časti odseku (NER, parser, sumarizácia..) - ako vygenerovať odpoveď.
- Porozmýšľať, ako použiť na túto úlohu Transformers.
25.2.
- Vytvorený textový report, kde je urobený prehľad metód vyhodnotenia a niekoľkých testovacích korpusov a benchmarkov. Rouge je používaná metrika.
Úlohy:
- Vypracovať prehľad generatívnych jazykových modelov
- Vyskúšať slovenský GPT model.
- Navrhnúť ako dotrénovať model na úlohu sumarizácie.
Zásobník úloh:
- Vytvoriť model pre generovanie faktických otázok ku zadanému paragrahu.. Môžeme využiť slovenský squad.
- Vytvoriť model pre sumarizáciu novinových článkov.
- Vytvoriť databázu pre vyhodnotenie generatívnych vlastností jazykového mo,delu. Napr. úloha sumarizácie alebo iná.
Stretnutie 27.1.2022
Úlohy:
- Napísať prehľad spôsobov vyhodnotenia generatívnych modelov
- Zostaviť prehľad metrík a dátových množin.
- Zostaviť prehľad najnovších generatívnych modelov.
Zásobník úloh:
- Zistiť niečo o algoritmoch GAN (generative adversarial network) a VAE (variational autoendoder).
- Napíšte na aké NLP úlohy sa používajú a s akými výsledkami.
- Zistite aké (optinálne) Python-Pytorch knižnice sa dajú použiť.
Bakalárska práca 2020
Názov: Neurónové jazykové modelovanie typu BERT.
Návrh na zadanie:
- Vypracujte prehľad metód jazykového modelovania pomocou neurónových sietí.
- Vypracujte prehľad aplikácií modelu typu BERT a spôsoby ich vyhodnotenia.
- Natrénujte jazykový model metódou BERT alebo podobnou.
- Vyhodnoťte jazykový model a navrhnite zlepšenia presnosti.
Zásobník úloh:
- Cieľom je vedieť natrénovať BERT model a vyhodnotiť ho na zvolenej testovacej množine.
- vyhodnotiť slovenský Roberta Model na pokusnej množine SK-quad.
Stretnutie 12.3.
Stav:
- Konzultácia štruktúry práce
Úlohy:
- Písať.
Stretnutie 26.2.
Stav:
- Vyriešený technický problém s architektúrou modelu podľa predpokladu.
- Urobené vyhodnotenie modelu wiki103 na CommonsenseQA.
Úlohy:
- Pokračujte v práci na textovej časti.
- Odovzdané pracovné dáta pre slovenský Roberta Model aj SK-Quad. Pokúste sa to vyhodnotiť ako neprioritnú ulohu.
Stretnutie 22.2.
Stav:
- Natrénovaný model wiki103 na stroji Quadro. Problém sa vyriešil vypnutím GPU pri trénovaní,
- Vznikol problém pri vypracovaní https://github.com/pytorch/fairseq/blob/master/examples/roberta/commonsense_qa/README.md - Architecture mismatch. Možné riešenie - iný prepínač
-arch
pri dotrénovaní. tak aby sedel s predtrénovaním.
Úlohy:
- skúsiť vyhodnotenie Wiki 103 na Commonsense
- Pokračujte v práci na textovej časti - vytvorte plynulý text.
Bakalársky projekt 2020
Stretnutie 12.2.
Stav:
- Pokúšame sa vytvoriť hodnotenie pomcou množiny CommonSenseQA
- Problém pri trénovaní na Wiki103 na stroji Quadra, (vyzerá to ako deadlock)
- Máme k dispozícii ROBERTA model natrénovaný na veľkej množine slovenských dát.
Do budúceho stretnutia:
- Problém sa možno dá obísť skopírovaním modelu zo stroja Tesla.
- na kopírovanie použite príkaz
scp -r user@server:zdrojovyadresar cielovyadresar
. - pokračovať vo vyhodnotení pomocou CommonSenseQA.
- skúste vyhodnotiť aj slovenský model. Ako?
- pracujte na súvislom texte bakalárskej práce.
Virtuálne stretnutie 18.12.2020
Stav:
- Natrénovaný model ROBERTA na malej množine Wiki103 podľa tutoriálu. Trénovanie trvalo jeden týždeň.
- Spísané poznámky ku množine SQUAD.
- Vytvorený prístup na server quadra.kemt.fei.tuke.sk
Úlohy:
- Pokračovať v písaní
- Prejsť si tutoriál https://github.com/pytorch/fairseq/blob/master/examples/roberta/commonsense_qa/README.md - cieľom je vedieť vyhodnotiť BERT model.
- Pri trénovaní si overte, či sú využité všetky 4 karty.
- Pozrite si DP Lukáš Pokrývka
- Ak pôjde trénovanie v poriadku, skúste vykonať viac experimentov s rôznymi parametrami, zapíšte si postup experimetu (príkazový riadok) a výsledok.
Virtuálne stretnutie 4.12.2020
Stav:
- Preštudovaný tutoriál https://github.com/pytorch/fairseq/blob/master/examples/roberta/README.pretraining.md
- Vyriešený problém s Pytorch.
- Inštalácia Fairseq Conda aj Pytorch.
- Chyba optimizéra Fairseq a jej riešenie.
- Vypracované poznámky o trénovaní a vyhodnocovaní BERT.
Úlohy:
- Pokračujte v práci na písomnej časti. Skúste prepísať odrážky do plynulého textu.
- Pridajte poznámky o vyhodnotení pomocou SQUAD.
- Pokračujte v trénovaní Roberta na dátovej sade Wiki-103 na systéme Tesla, odhadovaný čas trénovania 64 hod.
- Zistite ako sa dá vyhodnotiť natrénovaný model Roberta.
- Zvážiť možnosť trénovania na systéme Titan a Quadra (pre vedúceho).
Virtuálne stretnutie 20.11.2020
Stav:
- Urobené tutoriály ale iba na CPU.
Do ďalšieho stretnutia:
- Prejsť si tutoriál https://github.com/pytorch/fairseq/blob/master/examples/roberta/README.pretraining.md .
- Pracovať na písomnej časti - zamerať sa na vyhodnotenie BERT modelu. Na aké modelové úlohy sa používa?
- Napíšte poznámky, kde všade sa vyskytol technický problém a aké bolo riešenie. Dôležité sú verzie a podmienky pri ktorých sa problém vyskytol.
- Spíšte ako nainštalovať knižnice tak aby to fungovalo (s CPU aj s GPU).
- Vytvorte si na GITe repozitár bp2021, do neho dajte poznámky a kódy ktoré ste vyskúšali.
Virtuálne stretnutie 13.11.2020
Stav:
- Vypracované poznámky aj k transformer a BERT
- Vyskúšaná release verzia Fairseq. Stále trvá technický problém s tutoriálom.
- Vyskúšaný BERT tutoriáli. Chyba "illegal instruction" pri extrahovaní príznakov "extract features from ROBERTA". https://discuss.pytorch.org/t/illegal-instruction-core-dumped-in-first-pytorch-tutorial/62059/3 pravdepodobne problém s inštrukčnou sadou CPU.
- \vytvorený prístup na tesla pre vyriešenie.
Do ďalšieho stretnutia:
- pokračovať v otvorených úlohách.
Virtuálne stretnutie 30.10.2020
Stav:
- Vypracované poznámky k seq2seq
- nainštalovaný Pytorch a fairseq
- problémy s tutoriálom. Riešenie by mohlo byť použitie release verzie 0.9.0, pip install fairseq=0.9.0
Do ďalšieho stretnutia:
- Vyriešte technické porblémy
- prejdide si tutoriál https://fairseq.readthedocs.io/en/latest/getting_started.html#training-a-new-model
- Prejsť si tutoriál https://github.com/pytorch/fairseq/blob/master/examples/roberta/README.md alebo podobný.
- Preštudujte si články na tému BERT, urobte si poznámky čo ste sa dozvedeli spolu so zdrojom.
Virtuálne stretnutie 16.10.2020
Stav:
- Vypracované poznámky k uvedeným bodom.
- Problém s inštaláciou Anaconda.
Do ďalieho stretnutia:
- nainštalujte pytorch a knižnicu fairseq
- prejtide si tutoriál https://fairseq.readthedocs.io/en/latest/getting_started.html#training-a-new-model
- Napíšte ďalšie poznámky ku architektúre encoder-decoder, nájdite najdôležitejšie články a čo hovoria.
Virtuálne stretnutie 2.10.2020
Vytvorený prístup ssh megela@idoc.fei.tuke.sk
Úlohy do ďalšieho stretnutia:
- Naštudujte si a vyracujte poznámky s uvedením zdroja:
- spracovanie prirodzeného jazyka
- jazykové modelovanie
- rekurentná neurónová sieť
- architektúra enkóder dekóder alebo seq2seq
- Nainštalujte si prostredie Anaconda, pytorch a knižnicu fairseq
Na štúdium:
https://git.kemt.fei.tuke.sk/KEMT/zpwiki/src/branch/master/pages/topics
- python
- nlp
- seq2seq