bakalarka_praca/peft/model_peft.py

141 lines
4.3 KiB
Python

import numpy as np
import torch
from datasets import load_dataset, concatenate_datasets
from sklearn.metrics import precision_recall_fscore_support
from transformers import (
AutoTokenizer,
AutoModelForSequenceClassification,
Trainer,
TrainingArguments,
set_seed
)
from peft import get_peft_model, LoraConfig, TaskType
# Set seed for reproducibility
set_seed(42)
# Load dataset
ds = load_dataset("TUKE-KEMT/hate_speech_slovak")
label_0 = ds['train'].filter(lambda example: example['label'] == 0)
label_1 = ds['train'].filter(lambda example: example['label'] == 1)
def create_stratified_split(label_0, label_1, n_samples, seed=42):
few_shot_0 = label_0.shuffle(seed=seed).select(range(n_samples))
few_shot_1 = label_1.shuffle(seed=seed).select(range(n_samples))
return concatenate_datasets([few_shot_0, few_shot_1]).shuffle(seed=seed)
train_dataset = create_stratified_split(label_0, label_1, n_samples=40)
val_dataset = create_stratified_split(label_0, label_1, n_samples=10, seed=43)
test_dataset = create_stratified_split(label_0, label_1, n_samples=50, seed=44)
# Load tokenizer and base model
model_name = "ApoTro/slovak-t5-small"
tokenizer = AutoTokenizer.from_pretrained(model_name, force_download=True)
model = AutoModelForSequenceClassification.from_pretrained(model_name, num_labels=2)
# Apply LoRA tuning
peft_config = LoraConfig(
task_type=TaskType.SEQ_CLS,
inference_mode=False,
r=8,
lora_alpha=32,
lora_dropout=0.1
)
model = get_peft_model(model, peft_config)
def tokenize(batch):
return tokenizer(
batch["text"],
padding="max_length",
truncation=True,
max_length=128
)
def prepare_dataset(dataset):
dataset = dataset.map(tokenize, batched=True, remove_columns=["text"])
return dataset.rename_column("label", "labels")
train_dataset = prepare_dataset(train_dataset)
val_dataset = prepare_dataset(val_dataset)
test_dataset = prepare_dataset(test_dataset)
# Set device
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
# Define training arguments
training_args = TrainingArguments(
output_dir="./hate_speech_model",
per_device_train_batch_size=8,
per_device_eval_batch_size=16,
learning_rate=3e-5,
num_train_epochs=7,
evaluation_strategy="epoch",
save_strategy="epoch",
load_best_model_at_end=True,
metric_for_best_model="f1",
greater_is_better=True,
warmup_steps=100,
weight_decay=0.01,
report_to="none",
seed=42,
logging_steps=10,
gradient_accumulation_steps=2,
lr_scheduler_type="cosine",
logging_dir='./logs',
)
def compute_metrics(pred):
logits = pred.predictions[0]
preds = logits.argmax(-1)
labels = pred.label_ids
precision, recall, f1, _ = precision_recall_fscore_support(
labels, preds, average='binary'
)
return {
'precision': precision,
'recall': recall,
'f1': f1
}
trainer = Trainer(
model=model,
args=training_args,
train_dataset=train_dataset,
eval_dataset=val_dataset,
compute_metrics=compute_metrics,
)
trainer.train()
trainer.save_model("./hate_speech_model/best_model")
# Evaluate model
results = trainer.evaluate(test_dataset)
print("\n📊 Evaluation results on test set:")
print(f"🎯 Precision: {results['eval_precision']:.4f}")
print(f"🎯 Recall: {results['eval_recall']:.4f}")
print(f"🎯 F1-score: {results['eval_f1']:.4f}")
# Function for text classification
#def classify_text(text, model, tokenizer, device):
# model.eval()
# inputs = tokenizer(text, return_tensors="pt", truncation=True, padding="max_length", max_length=128).to(device)
# with torch.no_grad():
# outputs = model(**inputs)
# logits = outputs.logits
# pred = torch.argmax(logits, dim=-1).item()
# return "🛑 Hate Speech" if pred == 1 else "✅ Not Hate Speech"
# Testing examples
test_texts = [
"Toto je úplne normálny text bez nenávisti.",
"Nenávidím ťa a všetkých ako ty!",
"Každý má právo na svoj názor, ale musíme byť rešpektujúci.",
"Všetci ľudia tejto skupiny sú strašní a mali by byť vyhodení!"
]
print("\n🔍 Testing custom inputs:")
for text in test_texts:
result = classify_text(text, model, tokenizer, device)
print(f"📝 Text: {text}\n➡️ Prediction: {result}\n")