173 lines
5.5 KiB
Python
173 lines
5.5 KiB
Python
|
||
from flask import Flask, request, jsonify, Response, send_from_directory
|
||
from flask_cors import CORS
|
||
from flask_caching import Cache
|
||
import json
|
||
import os
|
||
import hashlib
|
||
import re
|
||
import psycopg2
|
||
from datetime import datetime
|
||
import pytz
|
||
import torch
|
||
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
||
|
||
app = Flask(__name__)
|
||
CORS(app)
|
||
app.config['CACHE_TYPE'] = 'SimpleCache'
|
||
cache = Cache(app)
|
||
|
||
# Database connection
|
||
DATABASE_URL = os.environ.get('DATABASE_URL')
|
||
conn = psycopg2.connect(DATABASE_URL)
|
||
cursor = conn.cursor()
|
||
|
||
# Initialize DB
|
||
cursor.execute('''
|
||
CREATE TABLE IF NOT EXISTS history (
|
||
id SERIAL PRIMARY KEY,
|
||
text TEXT NOT NULL,
|
||
prediction TEXT NOT NULL,
|
||
timestamp TIMESTAMP NOT NULL
|
||
)
|
||
''')
|
||
conn.commit()
|
||
|
||
model_path = "tetianamohorian/hate_speech_model"
|
||
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
||
model = AutoModelForSequenceClassification.from_pretrained(model_path)
|
||
model.eval()
|
||
|
||
HISTORY_FILE = "history.json"
|
||
|
||
def generate_text_hash(text):
|
||
return hashlib.md5(text.encode('utf-8')).hexdigest()
|
||
|
||
def get_current_time():
|
||
tz = pytz.timezone('Europe/Bratislava')
|
||
return datetime.now(tz)
|
||
|
||
def sync_history_file():
|
||
# Synchronizácia history.json so všetkými záznamami z databázy
|
||
cursor.execute("SELECT text, prediction, timestamp FROM history ORDER BY timestamp DESC")
|
||
rows = cursor.fetchall()
|
||
history = [
|
||
{
|
||
"text": r[0],
|
||
"prediction": r[1],
|
||
"timestamp": r[2].strftime("%d.%m.%Y %H:%M:%S")
|
||
} for r in rows
|
||
]
|
||
with open(HISTORY_FILE, "w", encoding="utf-8") as f:
|
||
json.dump(history, f, ensure_ascii=False, indent=2)
|
||
|
||
def save_to_history(text, prediction_label):
|
||
timestamp = get_current_time()
|
||
try:
|
||
# Проверка на дубликат
|
||
cursor.execute(
|
||
"SELECT 1 FROM history WHERE text = %s AND prediction = %s",
|
||
(text, prediction_label)
|
||
)
|
||
if cursor.fetchone() is None:
|
||
cursor.execute(
|
||
"INSERT INTO history (text, prediction, timestamp) VALUES (%s, %s, %s)",
|
||
(text, prediction_label, timestamp)
|
||
)
|
||
conn.commit()
|
||
sync_history_file()
|
||
except Exception as e:
|
||
print("Nepodarilo sa uložiť do databázy alebo prepísať history.json:", e)
|
||
|
||
@app.route("/")
|
||
def serve_frontend():
|
||
return send_from_directory("static", "index.html")
|
||
|
||
@app.route("/<path:path>")
|
||
def serve_static_files(path):
|
||
return send_from_directory("static", path)
|
||
|
||
@app.route("/api/predict", methods=["POST"])
|
||
def predict():
|
||
try:
|
||
data = request.json
|
||
text = data.get("text", "")
|
||
|
||
if not text:
|
||
return jsonify({"error": "Text nesmie byť prázdny."}), 400
|
||
if len(text) > 512:
|
||
return jsonify({"error": "Text je príliš dlhý. Maximálne 512 znakov."}), 400
|
||
if re.search(r"[а-яА-ЯёЁ]", text):
|
||
return jsonify({"error": "Text nesmie obsahovať azbuku (cyriliku)."}), 400
|
||
|
||
text_hash = generate_text_hash(text)
|
||
cached_result = cache.get(text_hash)
|
||
if cached_result:
|
||
save_to_history(text, cached_result)
|
||
return jsonify({"prediction": cached_result}), 200
|
||
|
||
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True)
|
||
|
||
with torch.no_grad():
|
||
outputs = model(**inputs)
|
||
predictions = torch.argmax(outputs.logits, dim=1).item()
|
||
|
||
prediction_label = "Pravdepodobne toxický" if predictions == 1 else "Neutrálny text"
|
||
cache.set(text_hash, prediction_label)
|
||
|
||
save_to_history(text, prediction_label)
|
||
|
||
return jsonify({"prediction": prediction_label}), 200
|
||
|
||
except Exception as e:
|
||
return jsonify({"error": str(e)}), 500
|
||
|
||
@app.route("/api/history", methods=["GET"])
|
||
def get_history():
|
||
try:
|
||
with open(HISTORY_FILE, "r", encoding="utf-8") as f:
|
||
content = json.load(f)
|
||
return Response(
|
||
json.dumps(content, ensure_ascii=False, indent=2),
|
||
mimetype="application/json"
|
||
)
|
||
except Exception as e:
|
||
return jsonify({"error": str(e)}), 500
|
||
|
||
@app.route("/api/history/reset", methods=["POST"])
|
||
def reset_history():
|
||
try:
|
||
cursor.execute("DELETE FROM history")
|
||
conn.commit()
|
||
with open(HISTORY_FILE, "w", encoding="utf-8") as f:
|
||
json.dump([], f, ensure_ascii=False, indent=2)
|
||
return jsonify({"message": "História bola úspešne vymazaná."}), 200
|
||
except Exception as e:
|
||
return jsonify({"error": str(e)}), 500
|
||
|
||
@app.route("/api/history/db", methods=["GET"])
|
||
def get_history_from_db():
|
||
try:
|
||
cursor.execute("SELECT text, prediction, timestamp FROM history ORDER BY timestamp DESC")
|
||
rows = cursor.fetchall()
|
||
history = [
|
||
{
|
||
"text": r[0],
|
||
"prediction": r[1],
|
||
"timestamp": r[2].strftime("%d.%m.%Y %H:%M:%S")
|
||
} for r in rows
|
||
]
|
||
return Response(
|
||
json.dumps(history, ensure_ascii=False, indent=2),
|
||
mimetype="application/json"
|
||
)
|
||
except Exception as e:
|
||
return jsonify({"error": str(e)}), 500
|
||
|
||
print("✅ Flask is starting...")
|
||
sync_history_file()
|
||
|
||
if __name__ == "__main__":
|
||
port = int(os.environ.get("PORT", 8080))
|
||
app.run(host="0.0.0.0", port=port)
|