Přidat peft/model_few_shot_peft.py
This commit is contained in:
parent
38c802a07e
commit
5b6f7958bc
140
peft/model_few_shot_peft.py
Normal file
140
peft/model_few_shot_peft.py
Normal file
@ -0,0 +1,140 @@
|
||||
import numpy as np
|
||||
import torch
|
||||
from datasets import load_dataset, concatenate_datasets
|
||||
from sklearn.metrics import precision_recall_fscore_support
|
||||
from transformers import (
|
||||
AutoTokenizer,
|
||||
AutoModelForSequenceClassification,
|
||||
Trainer,
|
||||
TrainingArguments,
|
||||
set_seed
|
||||
)
|
||||
from peft import get_peft_model, LoraConfig, TaskType
|
||||
|
||||
# Set seed for reproducibility
|
||||
set_seed(42)
|
||||
|
||||
# Load dataset
|
||||
ds = load_dataset("TUKE-KEMT/hate_speech_slovak")
|
||||
label_0 = ds['train'].filter(lambda example: example['label'] == 0)
|
||||
label_1 = ds['train'].filter(lambda example: example['label'] == 1)
|
||||
|
||||
def create_stratified_split(label_0, label_1, n_samples, seed=42):
|
||||
few_shot_0 = label_0.shuffle(seed=seed).select(range(n_samples))
|
||||
few_shot_1 = label_1.shuffle(seed=seed).select(range(n_samples))
|
||||
return concatenate_datasets([few_shot_0, few_shot_1]).shuffle(seed=seed)
|
||||
|
||||
train_dataset = create_stratified_split(label_0, label_1, n_samples=40)
|
||||
val_dataset = create_stratified_split(label_0, label_1, n_samples=10, seed=43)
|
||||
test_dataset = create_stratified_split(label_0, label_1, n_samples=50, seed=44)
|
||||
|
||||
# Load tokenizer and base model
|
||||
model_name = "ApoTro/slovak-t5-small"
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_name, force_download=True)
|
||||
model = AutoModelForSequenceClassification.from_pretrained(model_name, num_labels=2)
|
||||
|
||||
# Apply LoRA tuning
|
||||
peft_config = LoraConfig(
|
||||
task_type=TaskType.SEQ_CLS,
|
||||
inference_mode=False,
|
||||
r=8,
|
||||
lora_alpha=32,
|
||||
lora_dropout=0.1
|
||||
)
|
||||
model = get_peft_model(model, peft_config)
|
||||
|
||||
def tokenize(batch):
|
||||
return tokenizer(
|
||||
batch["text"],
|
||||
padding="max_length",
|
||||
truncation=True,
|
||||
max_length=128
|
||||
)
|
||||
|
||||
def prepare_dataset(dataset):
|
||||
dataset = dataset.map(tokenize, batched=True, remove_columns=["text"])
|
||||
return dataset.rename_column("label", "labels")
|
||||
|
||||
train_dataset = prepare_dataset(train_dataset)
|
||||
val_dataset = prepare_dataset(val_dataset)
|
||||
test_dataset = prepare_dataset(test_dataset)
|
||||
|
||||
# Set device
|
||||
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
||||
model.to(device)
|
||||
|
||||
# Define training arguments
|
||||
training_args = TrainingArguments(
|
||||
output_dir="./hate_speech_model",
|
||||
per_device_train_batch_size=8,
|
||||
per_device_eval_batch_size=16,
|
||||
learning_rate=3e-5,
|
||||
num_train_epochs=7,
|
||||
evaluation_strategy="epoch",
|
||||
save_strategy="epoch",
|
||||
load_best_model_at_end=True,
|
||||
metric_for_best_model="f1",
|
||||
greater_is_better=True,
|
||||
warmup_steps=100,
|
||||
weight_decay=0.01,
|
||||
report_to="none",
|
||||
seed=42,
|
||||
logging_steps=10,
|
||||
gradient_accumulation_steps=2,
|
||||
lr_scheduler_type="cosine",
|
||||
logging_dir='./logs',
|
||||
)
|
||||
|
||||
def compute_metrics(pred):
|
||||
logits = pred.predictions[0]
|
||||
preds = logits.argmax(-1)
|
||||
labels = pred.label_ids
|
||||
precision, recall, f1, _ = precision_recall_fscore_support(
|
||||
labels, preds, average='binary'
|
||||
)
|
||||
return {
|
||||
'precision': precision,
|
||||
'recall': recall,
|
||||
'f1': f1
|
||||
}
|
||||
|
||||
trainer = Trainer(
|
||||
model=model,
|
||||
args=training_args,
|
||||
train_dataset=train_dataset,
|
||||
eval_dataset=val_dataset,
|
||||
compute_metrics=compute_metrics,
|
||||
)
|
||||
|
||||
trainer.train()
|
||||
trainer.save_model("./hate_speech_model/best_model")
|
||||
|
||||
# Evaluate model
|
||||
results = trainer.evaluate(test_dataset)
|
||||
print("\n📊 Evaluation results on test set:")
|
||||
print(f"🎯 Precision: {results['eval_precision']:.4f}")
|
||||
print(f"🎯 Recall: {results['eval_recall']:.4f}")
|
||||
print(f"🎯 F1-score: {results['eval_f1']:.4f}")
|
||||
|
||||
# Function for text classification
|
||||
#def classify_text(text, model, tokenizer, device):
|
||||
# model.eval()
|
||||
# inputs = tokenizer(text, return_tensors="pt", truncation=True, padding="max_length", max_length=128).to(device)
|
||||
# with torch.no_grad():
|
||||
# outputs = model(**inputs)
|
||||
# logits = outputs.logits
|
||||
# pred = torch.argmax(logits, dim=-1).item()
|
||||
# return "🛑 Hate Speech" if pred == 1 else "✅ Not Hate Speech"
|
||||
|
||||
# Testing examples
|
||||
test_texts = [
|
||||
"Toto je úplne normálny text bez nenávisti.",
|
||||
"Nenávidím ťa a všetkých ako ty!",
|
||||
"Každý má právo na svoj názor, ale musíme byť rešpektujúci.",
|
||||
"Všetci ľudia tejto skupiny sú strašní a mali by byť vyhodení!"
|
||||
]
|
||||
|
||||
print("\n🔍 Testing custom inputs:")
|
||||
for text in test_texts:
|
||||
result = classify_text(text, model, tokenizer, device)
|
||||
print(f"📝 Text: {text}\n➡️ Prediction: {result}\n")
|
Loading…
Reference in New Issue
Block a user