forked from KEMT/zpwiki
		
	
		
			
				
	
	
		
			332 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			332 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
import math
 | 
						|
import random
 | 
						|
import warnings
 | 
						|
 | 
						|
import numpy as np
 | 
						|
import scipy.ndimage
 | 
						|
 | 
						|
import torch
 | 
						|
from torch.autograd import Function
 | 
						|
from torch.autograd.function import once_differentiable
 | 
						|
import torch.backends.cudnn as cudnn
 | 
						|
 | 
						|
from util.logconf import logging
 | 
						|
log = logging.getLogger(__name__)
 | 
						|
# log.setLevel(logging.WARN)
 | 
						|
# log.setLevel(logging.INFO)
 | 
						|
log.setLevel(logging.DEBUG)
 | 
						|
 | 
						|
def cropToShape(image, new_shape, center_list=None, fill=0.0):
 | 
						|
    # log.debug([image.shape, new_shape, center_list])
 | 
						|
    # assert len(image.shape) == 3, repr(image.shape)
 | 
						|
 | 
						|
    if center_list is None:
 | 
						|
        center_list = [int(image.shape[i] / 2) for i in range(3)]
 | 
						|
 | 
						|
    crop_list = []
 | 
						|
    for i in range(0, 3):
 | 
						|
        crop_int = center_list[i]
 | 
						|
        if image.shape[i] > new_shape[i] and crop_int is not None:
 | 
						|
 | 
						|
            # We can't just do crop_int +/- shape/2 since shape might be odd
 | 
						|
            # and ints round down.
 | 
						|
            start_int = crop_int - int(new_shape[i]/2)
 | 
						|
            end_int = start_int + new_shape[i]
 | 
						|
            crop_list.append(slice(max(0, start_int), end_int))
 | 
						|
        else:
 | 
						|
            crop_list.append(slice(0, image.shape[i]))
 | 
						|
 | 
						|
    # log.debug([image.shape, crop_list])
 | 
						|
    image = image[crop_list]
 | 
						|
 | 
						|
    crop_list = []
 | 
						|
    for i in range(0, 3):
 | 
						|
        if image.shape[i] < new_shape[i]:
 | 
						|
            crop_int = int((new_shape[i] - image.shape[i]) / 2)
 | 
						|
            crop_list.append(slice(crop_int, crop_int + image.shape[i]))
 | 
						|
        else:
 | 
						|
            crop_list.append(slice(0, image.shape[i]))
 | 
						|
 | 
						|
    # log.debug([image.shape, crop_list])
 | 
						|
    new_image = np.zeros(new_shape, dtype=image.dtype)
 | 
						|
    new_image[:] = fill
 | 
						|
    new_image[crop_list] = image
 | 
						|
 | 
						|
    return new_image
 | 
						|
 | 
						|
 | 
						|
def zoomToShape(image, new_shape, square=True):
 | 
						|
    # assert image.shape[-1] in {1, 3, 4}, repr(image.shape)
 | 
						|
 | 
						|
    if square and image.shape[0] != image.shape[1]:
 | 
						|
        crop_int = min(image.shape[0], image.shape[1])
 | 
						|
        new_shape = [crop_int, crop_int, image.shape[2]]
 | 
						|
        image = cropToShape(image, new_shape)
 | 
						|
 | 
						|
    zoom_shape = [new_shape[i] / image.shape[i] for i in range(3)]
 | 
						|
 | 
						|
    with warnings.catch_warnings():
 | 
						|
        warnings.simplefilter("ignore")
 | 
						|
        image = scipy.ndimage.interpolation.zoom(
 | 
						|
            image, zoom_shape,
 | 
						|
            output=None, order=0, mode='nearest', cval=0.0, prefilter=True)
 | 
						|
 | 
						|
    return image
 | 
						|
 | 
						|
def randomOffset(image_list, offset_rows=0.125, offset_cols=0.125):
 | 
						|
 | 
						|
    center_list = [int(image_list[0].shape[i] / 2) for i in range(3)]
 | 
						|
    center_list[0] += int(offset_rows * (random.random() - 0.5) * 2)
 | 
						|
    center_list[1] += int(offset_cols * (random.random() - 0.5) * 2)
 | 
						|
    center_list[2] = None
 | 
						|
 | 
						|
    new_list = []
 | 
						|
    for image in image_list:
 | 
						|
        new_image = cropToShape(image, image.shape, center_list)
 | 
						|
        new_list.append(new_image)
 | 
						|
 | 
						|
    return new_list
 | 
						|
 | 
						|
 | 
						|
def randomZoom(image_list, scale=None, scale_min=0.8, scale_max=1.3):
 | 
						|
    if scale is None:
 | 
						|
        scale = scale_min + (scale_max - scale_min) * random.random()
 | 
						|
 | 
						|
    new_list = []
 | 
						|
    for image in image_list:
 | 
						|
        # assert image.shape[-1] in {1, 3, 4}, repr(image.shape)
 | 
						|
 | 
						|
        with warnings.catch_warnings():
 | 
						|
            warnings.simplefilter("ignore")
 | 
						|
            # log.info([image.shape])
 | 
						|
            zimage = scipy.ndimage.interpolation.zoom(
 | 
						|
                image, [scale, scale, 1.0],
 | 
						|
                output=None, order=0, mode='nearest', cval=0.0, prefilter=True)
 | 
						|
        image = cropToShape(zimage, image.shape)
 | 
						|
 | 
						|
        new_list.append(image)
 | 
						|
 | 
						|
    return new_list
 | 
						|
 | 
						|
 | 
						|
_randomFlip_transform_list = [
 | 
						|
    # lambda a: np.rot90(a, axes=(0, 1)),
 | 
						|
    # lambda a: np.flip(a, 0),
 | 
						|
    lambda a: np.flip(a, 1),
 | 
						|
]
 | 
						|
 | 
						|
def randomFlip(image_list, transform_bits=None):
 | 
						|
    if transform_bits is None:
 | 
						|
        transform_bits = random.randrange(0, 2 ** len(_randomFlip_transform_list))
 | 
						|
 | 
						|
    new_list = []
 | 
						|
    for image in image_list:
 | 
						|
        # assert image.shape[-1] in {1, 3, 4}, repr(image.shape)
 | 
						|
 | 
						|
        for n in range(len(_randomFlip_transform_list)):
 | 
						|
            if transform_bits & 2**n:
 | 
						|
                # prhist(image, 'before')
 | 
						|
                image = _randomFlip_transform_list[n](image)
 | 
						|
                # prhist(image, 'after ')
 | 
						|
 | 
						|
        new_list.append(image)
 | 
						|
 | 
						|
    return new_list
 | 
						|
 | 
						|
 | 
						|
def randomSpin(image_list, angle=None, range_tup=None, axes=(0, 1)):
 | 
						|
    if range_tup is None:
 | 
						|
        range_tup = (0, 360)
 | 
						|
 | 
						|
    if angle is None:
 | 
						|
        angle = range_tup[0] + (range_tup[1] - range_tup[0]) * random.random()
 | 
						|
 | 
						|
    new_list = []
 | 
						|
    for image in image_list:
 | 
						|
        # assert image.shape[-1] in {1, 3, 4}, repr(image.shape)
 | 
						|
 | 
						|
        image = scipy.ndimage.interpolation.rotate(
 | 
						|
                image, angle, axes=axes, reshape=False,
 | 
						|
                output=None, order=0, mode='nearest', cval=0.0, prefilter=True)
 | 
						|
 | 
						|
        new_list.append(image)
 | 
						|
 | 
						|
    return new_list
 | 
						|
 | 
						|
 | 
						|
def randomNoise(image_list, noise_min=-0.1, noise_max=0.1):
 | 
						|
    noise = np.zeros_like(image_list[0])
 | 
						|
    noise += (noise_max - noise_min) * np.random.random_sample(image_list[0].shape) + noise_min
 | 
						|
    noise *= 5
 | 
						|
    noise = scipy.ndimage.filters.gaussian_filter(noise, 3)
 | 
						|
    # noise += (noise_max - noise_min) * np.random.random_sample(image_hsv.shape) + noise_min
 | 
						|
 | 
						|
    new_list = []
 | 
						|
    for image_hsv in image_list:
 | 
						|
        image_hsv = image_hsv + noise
 | 
						|
 | 
						|
        new_list.append(image_hsv)
 | 
						|
 | 
						|
    return new_list
 | 
						|
 | 
						|
 | 
						|
def randomHsvShift(image_list, h=None, s=None, v=None,
 | 
						|
                   h_min=-0.1, h_max=0.1,
 | 
						|
                   s_min=0.5, s_max=2.0,
 | 
						|
                   v_min=0.5, v_max=2.0):
 | 
						|
    if h is None:
 | 
						|
        h = h_min + (h_max - h_min) * random.random()
 | 
						|
    if s is None:
 | 
						|
        s = s_min + (s_max - s_min) * random.random()
 | 
						|
    if v is None:
 | 
						|
        v = v_min + (v_max - v_min) * random.random()
 | 
						|
 | 
						|
    new_list = []
 | 
						|
    for image_hsv in image_list:
 | 
						|
        # assert image_hsv.shape[-1] == 3, repr(image_hsv.shape)
 | 
						|
 | 
						|
        image_hsv[:,:,0::3] += h
 | 
						|
        image_hsv[:,:,1::3] = image_hsv[:,:,1::3] ** s
 | 
						|
        image_hsv[:,:,2::3] = image_hsv[:,:,2::3] ** v
 | 
						|
 | 
						|
        new_list.append(image_hsv)
 | 
						|
 | 
						|
    return clampHsv(new_list)
 | 
						|
 | 
						|
 | 
						|
def clampHsv(image_list):
 | 
						|
    new_list = []
 | 
						|
    for image_hsv in image_list:
 | 
						|
        image_hsv = image_hsv.clone()
 | 
						|
 | 
						|
        # Hue wraps around
 | 
						|
        image_hsv[:,:,0][image_hsv[:,:,0] > 1] -= 1
 | 
						|
        image_hsv[:,:,0][image_hsv[:,:,0] < 0] += 1
 | 
						|
 | 
						|
        # Everything else clamps between 0 and 1
 | 
						|
        image_hsv[image_hsv > 1] = 1
 | 
						|
        image_hsv[image_hsv < 0] = 0
 | 
						|
 | 
						|
        new_list.append(image_hsv)
 | 
						|
 | 
						|
    return new_list
 | 
						|
 | 
						|
 | 
						|
# def torch_augment(input):
 | 
						|
#     theta = random.random() * math.pi * 2
 | 
						|
#     s = math.sin(theta)
 | 
						|
#     c = math.cos(theta)
 | 
						|
#     c1 = 1 - c
 | 
						|
#     axis_vector = torch.rand(3, device='cpu', dtype=torch.float64)
 | 
						|
#     axis_vector -= 0.5
 | 
						|
#     axis_vector /= axis_vector.abs().sum()
 | 
						|
#     l, m, n = axis_vector
 | 
						|
#
 | 
						|
#     matrix = torch.tensor([
 | 
						|
#         [l*l*c1 +   c, m*l*c1 - n*s, n*l*c1 + m*s, 0],
 | 
						|
#         [l*m*c1 + n*s, m*m*c1 +   c, n*m*c1 - l*s, 0],
 | 
						|
#         [l*n*c1 - m*s, m*n*c1 + l*s, n*n*c1 +   c, 0],
 | 
						|
#         [0, 0, 0, 1],
 | 
						|
#     ], device=input.device, dtype=torch.float32)
 | 
						|
#
 | 
						|
#     return th_affine3d(input, matrix)
 | 
						|
 | 
						|
 | 
						|
 | 
						|
 | 
						|
# following from https://github.com/ncullen93/torchsample/blob/master/torchsample/utils.py
 | 
						|
# MIT licensed
 | 
						|
 | 
						|
# def th_affine3d(input, matrix):
 | 
						|
#     """
 | 
						|
#     3D Affine image transform on torch.Tensor
 | 
						|
#     """
 | 
						|
#     A = matrix[:3,:3]
 | 
						|
#     b = matrix[:3,3]
 | 
						|
#
 | 
						|
#     # make a meshgrid of normal coordinates
 | 
						|
#     coords = th_iterproduct(input.size(-3), input.size(-2), input.size(-1), dtype=torch.float32)
 | 
						|
#
 | 
						|
#     # shift the coordinates so center is the origin
 | 
						|
#     coords[:,0] = coords[:,0] - (input.size(-3) / 2. - 0.5)
 | 
						|
#     coords[:,1] = coords[:,1] - (input.size(-2) / 2. - 0.5)
 | 
						|
#     coords[:,2] = coords[:,2] - (input.size(-1) / 2. - 0.5)
 | 
						|
#
 | 
						|
#     # apply the coordinate transformation
 | 
						|
#     new_coords = coords.mm(A.t().contiguous()) + b.expand_as(coords)
 | 
						|
#
 | 
						|
#     # shift the coordinates back so origin is origin
 | 
						|
#     new_coords[:,0] = new_coords[:,0] + (input.size(-3) / 2. - 0.5)
 | 
						|
#     new_coords[:,1] = new_coords[:,1] + (input.size(-2) / 2. - 0.5)
 | 
						|
#     new_coords[:,2] = new_coords[:,2] + (input.size(-1) / 2. - 0.5)
 | 
						|
#
 | 
						|
#     # map new coordinates using bilinear interpolation
 | 
						|
#     input_transformed = th_trilinear_interp3d(input, new_coords)
 | 
						|
#
 | 
						|
#     return input_transformed
 | 
						|
#
 | 
						|
#
 | 
						|
# def th_trilinear_interp3d(input, coords):
 | 
						|
#     """
 | 
						|
#     trilinear interpolation of 3D torch.Tensor image
 | 
						|
#     """
 | 
						|
#     # take clamp then floor/ceil of x coords
 | 
						|
#     x = torch.clamp(coords[:,0], 0, input.size(-3)-2)
 | 
						|
#     x0 = x.floor()
 | 
						|
#     x1 = x0 + 1
 | 
						|
#     # take clamp then floor/ceil of y coords
 | 
						|
#     y = torch.clamp(coords[:,1], 0, input.size(-2)-2)
 | 
						|
#     y0 = y.floor()
 | 
						|
#     y1 = y0 + 1
 | 
						|
#     # take clamp then floor/ceil of z coords
 | 
						|
#     z = torch.clamp(coords[:,2], 0, input.size(-1)-2)
 | 
						|
#     z0 = z.floor()
 | 
						|
#     z1 = z0 + 1
 | 
						|
#
 | 
						|
#     stride = torch.tensor(input.stride()[-3:], dtype=torch.int64, device=input.device)
 | 
						|
#     x0_ix = x0.mul(stride[0]).long()
 | 
						|
#     x1_ix = x1.mul(stride[0]).long()
 | 
						|
#     y0_ix = y0.mul(stride[1]).long()
 | 
						|
#     y1_ix = y1.mul(stride[1]).long()
 | 
						|
#     z0_ix = z0.mul(stride[2]).long()
 | 
						|
#     z1_ix = z1.mul(stride[2]).long()
 | 
						|
#
 | 
						|
#     # input_flat = th_flatten(input)
 | 
						|
#     input_flat = x.contiguous().view(x[0], x[1], -1)
 | 
						|
#
 | 
						|
#     vals_000 = input_flat[:, :, x0_ix+y0_ix+z0_ix]
 | 
						|
#     vals_001 = input_flat[:, :, x0_ix+y0_ix+z1_ix]
 | 
						|
#     vals_010 = input_flat[:, :, x0_ix+y1_ix+z0_ix]
 | 
						|
#     vals_011 = input_flat[:, :, x0_ix+y1_ix+z1_ix]
 | 
						|
#     vals_100 = input_flat[:, :, x1_ix+y0_ix+z0_ix]
 | 
						|
#     vals_101 = input_flat[:, :, x1_ix+y0_ix+z1_ix]
 | 
						|
#     vals_110 = input_flat[:, :, x1_ix+y1_ix+z0_ix]
 | 
						|
#     vals_111 = input_flat[:, :, x1_ix+y1_ix+z1_ix]
 | 
						|
#
 | 
						|
#     xd = x - x0
 | 
						|
#     yd = y - y0
 | 
						|
#     zd = z - z0
 | 
						|
#     xm1 = 1 - xd
 | 
						|
#     ym1 = 1 - yd
 | 
						|
#     zm1 = 1 - zd
 | 
						|
#
 | 
						|
#     x_mapped = (
 | 
						|
#             vals_000.mul(xm1).mul(ym1).mul(zm1) +
 | 
						|
#             vals_001.mul(xm1).mul(ym1).mul(zd) +
 | 
						|
#             vals_010.mul(xm1).mul(yd).mul(zm1) +
 | 
						|
#             vals_011.mul(xm1).mul(yd).mul(zd) +
 | 
						|
#             vals_100.mul(xd).mul(ym1).mul(zm1) +
 | 
						|
#             vals_101.mul(xd).mul(ym1).mul(zd) +
 | 
						|
#             vals_110.mul(xd).mul(yd).mul(zm1) +
 | 
						|
#             vals_111.mul(xd).mul(yd).mul(zd)
 | 
						|
#     )
 | 
						|
#
 | 
						|
#     return x_mapped.view_as(input)
 | 
						|
#
 | 
						|
# def th_iterproduct(*args, dtype=None):
 | 
						|
#     return torch.from_numpy(np.indices(args).reshape((len(args),-1)).T)
 | 
						|
#
 | 
						|
# def th_flatten(x):
 | 
						|
#     """Flatten tensor"""
 | 
						|
#     return x.contiguous().view(x[0], x[1], -1)
 |