forked from KEMT/zpwiki
		
	
		
			
				
	
	
		
			93 lines
		
	
	
		
			3.4 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			93 lines
		
	
	
		
			3.4 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| import os
 | |
| from datetime import datetime
 | |
| import argparse
 | |
| import torch.multiprocessing as mp
 | |
| import torchvision
 | |
| import torchvision.transforms as transforms
 | |
| import torch
 | |
| import torch.nn as nn
 | |
| import torch.distributed as dist
 | |
| from apex.parallel import DistributedDataParallel as DDP
 | |
| from apex import amp
 | |
| 
 | |
| 
 | |
| def main():
 | |
|     parser = argparse.ArgumentParser()
 | |
|     parser.add_argument('-n', '--nodes', default=1, type=int, metavar='N',
 | |
|                         help='number of data loading workers (default: 4)')
 | |
|     parser.add_argument('-g', '--gpus', default=1, type=int,
 | |
|                         help='number of gpus per node')
 | |
|     parser.add_argument('-nr', '--nr', default=0, type  =int,
 | |
|                         help='ranking within the nodes')
 | |
|     parser.add_argument('--epochs', default=2, type=int, metavar='N',
 | |
|                         help='number of total epochs to run')
 | |
|     args = parser.parse_args()
 | |
|     train(0, args)
 | |
| 
 | |
| 
 | |
| class ConvNet(nn.Module):
 | |
|     def __init__(self, num_classes=10):
 | |
|         super(ConvNet, self).__init__()
 | |
|         self.layer1 = nn.Sequential(
 | |
|             nn.Conv2d(1, 16, kernel_size=5, stride=1, padding=2),
 | |
|             nn.BatchNorm2d(16),
 | |
|             nn.ReLU(),
 | |
|             nn.MaxPool2d(kernel_size=2, stride=2))
 | |
|         self.layer2 = nn.Sequential(
 | |
|             nn.Conv2d(16, 32, kernel_size=5, stride=1, padding=2),
 | |
|             nn.BatchNorm2d(32),
 | |
|             nn.ReLU(),
 | |
|             nn.MaxPool2d(kernel_size=2, stride=2))
 | |
|         self.fc = nn.Linear(7*7*32, num_classes)
 | |
| 
 | |
|     def forward(self, x):
 | |
|         out = self.layer1(x)
 | |
|         out = self.layer2(out)
 | |
|         out = out.reshape(out.size(0), -1)
 | |
|         out = self.fc(out)
 | |
|         return out
 | |
| 
 | |
| 
 | |
| def train(gpu, args):
 | |
|     model = ConvNet()
 | |
|     torch.cuda.set_device(gpu)
 | |
|     model.cuda(gpu)
 | |
|     batch_size = 50
 | |
|     # define loss function (criterion) and optimizer
 | |
|     criterion = nn.CrossEntropyLoss().cuda(gpu)
 | |
|     optimizer = torch.optim.SGD(model.parameters(), 1e-4)
 | |
|     # Data loading code
 | |
|     train_dataset = torchvision.datasets.MNIST(root='./data',
 | |
|                                                train=True,
 | |
|                                                transform=transforms.ToTensor(),
 | |
|                                                download=True)
 | |
|     train_loader = torch.utils.data.DataLoader(dataset=train_dataset,
 | |
|                                                batch_size=batch_size,
 | |
|                                                shuffle=True,
 | |
|                                                num_workers=0,
 | |
|                                                pin_memory=True)
 | |
| 
 | |
|     start = datetime.now()
 | |
|     total_step = len(train_loader)
 | |
|     for epoch in range(args.epochs):
 | |
|         for i, (images, labels) in enumerate(train_loader):
 | |
|             images = images.cuda(non_blocking=True)
 | |
|             labels = labels.cuda(non_blocking=True)
 | |
|             # Forward pass
 | |
|             outputs = model(images)
 | |
|             loss = criterion(outputs, labels)
 | |
| 
 | |
|             # Backward and optimize
 | |
|             optimizer.zero_grad()
 | |
|             loss.backward()
 | |
|             optimizer.step()
 | |
|             if (i + 1) % 100 == 0 and gpu == 0:
 | |
|                 print('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}'.format(epoch + 1, args.epochs, i + 1, total_step,
 | |
|                                                                          loss.item()))
 | |
|     if gpu == 0:
 | |
|         print("Training complete in: " + str(datetime.now() - start))
 | |
| 
 | |
| 
 | |
| if __name__ == '__main__':
 | |
|     main()
 |