forked from KEMT/zpwiki
		
	
		
			
				
	
	
		
			247 lines
		
	
	
		
			9.2 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			247 lines
		
	
	
		
			9.2 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| import numpy as np
 | |
| import torch
 | |
| import torch.autograd as autograd
 | |
| import torch.nn as nn
 | |
| import torch.optim as optim
 | |
| from sklearn import metrics
 | |
| from datetime import datetime
 | |
| 
 | |
| torch.manual_seed(1)
 | |
| 
 | |
| def argmax(vec):
 | |
|     # return the argmax as a python int
 | |
|     _, idx = torch.max(vec, 1)
 | |
|     return idx.item()
 | |
| 
 | |
| 
 | |
| def prepare_sequence(seq, to_ix):
 | |
|     idxs = [to_ix[w] for w in seq]
 | |
|     return torch.tensor(idxs, dtype=torch.long)
 | |
| 
 | |
| 
 | |
| # Compute log sum exp in a numerically stable way for the forward algorithm
 | |
| def log_sum_exp(vec):
 | |
|     max_score = vec[0, argmax(vec)]
 | |
|     max_score_broadcast = max_score.view(1, -1).expand(1, vec.size()[1])
 | |
|     return max_score + \
 | |
|         torch.log(torch.sum(torch.exp(vec - max_score_broadcast)))
 | |
| 
 | |
| class BiLSTM_CRF(nn.Module):
 | |
| 
 | |
|     def __init__(self, vocab_size, tag_to_ix, embedding_dim, hidden_dim):
 | |
|         super(BiLSTM_CRF, self).__init__()
 | |
|         self.embedding_dim = embedding_dim
 | |
|         self.hidden_dim = hidden_dim
 | |
|         self.vocab_size = vocab_size
 | |
|         self.tag_to_ix = tag_to_ix
 | |
|         self.tagset_size = len(tag_to_ix)
 | |
| 
 | |
|         self.word_embeds = nn.Embedding(vocab_size, embedding_dim)
 | |
|         self.lstm = nn.LSTM(embedding_dim, hidden_dim // 2,
 | |
|                             num_layers=1, bidirectional=True)
 | |
| 
 | |
|         # Maps the output of the LSTM into tag space.
 | |
|         self.hidden2tag = nn.Linear(hidden_dim, self.tagset_size)
 | |
| 
 | |
|         # Matrix of transition parameters.  Entry i,j is the score of
 | |
|         # transitioning *to* i *from* j.
 | |
|         self.transitions = nn.Parameter(
 | |
|             torch.randn(self.tagset_size, self.tagset_size))
 | |
| 
 | |
|         # These two statements enforce the constraint that we never transfer
 | |
|         # to the start tag and we never transfer from the stop tag
 | |
|         self.transitions.data[tag_to_ix[START_TAG], :] = -10000
 | |
|         self.transitions.data[:, tag_to_ix[STOP_TAG]] = -10000
 | |
| 
 | |
|         self.hidden = self.init_hidden()
 | |
| 
 | |
|     def init_hidden(self):
 | |
|         return (torch.randn(2, 1, self.hidden_dim // 2),
 | |
|                 torch.randn(2, 1, self.hidden_dim // 2))
 | |
| 
 | |
|     def _forward_alg(self, feats):
 | |
|         # Do the forward algorithm to compute the partition function
 | |
|         init_alphas = torch.full((1, self.tagset_size), -10000.)
 | |
|         # START_TAG has all of the score.
 | |
|         init_alphas[0][self.tag_to_ix[START_TAG]] = 0.
 | |
| 
 | |
|         # Wrap in a variable so that we will get automatic backprop
 | |
|         forward_var = init_alphas
 | |
| 
 | |
|         # Iterate through the sentence
 | |
|         for feat in feats:
 | |
|             alphas_t = []  # The forward tensors at this timestep
 | |
|             for next_tag in range(self.tagset_size):
 | |
|                 # broadcast the emission score: it is the same regardless of
 | |
|                 # the previous tag
 | |
|                 emit_score = feat[next_tag].view(
 | |
|                     1, -1).expand(1, self.tagset_size)
 | |
|                 # the ith entry of trans_score is the score of transitioning to
 | |
|                 # next_tag from i
 | |
|                 trans_score = self.transitions[next_tag].view(1, -1)
 | |
|                 # The ith entry of next_tag_var is the value for the
 | |
|                 # edge (i -> next_tag) before we do log-sum-exp
 | |
|                 next_tag_var = forward_var + trans_score + emit_score
 | |
|                 # The forward variable for this tag is log-sum-exp of all the
 | |
|                 # scores.
 | |
|                 alphas_t.append(log_sum_exp(next_tag_var).view(1))
 | |
|             forward_var = torch.cat(alphas_t).view(1, -1)
 | |
|         terminal_var = forward_var + self.transitions[self.tag_to_ix[STOP_TAG]]
 | |
|         alpha = log_sum_exp(terminal_var)
 | |
|         return alpha
 | |
| 
 | |
|     def _get_lstm_features(self, sentence):
 | |
|         self.hidden = self.init_hidden()
 | |
|         embeds = self.word_embeds(sentence).view(len(sentence), 1, -1)
 | |
|         lstm_out, self.hidden = self.lstm(embeds, self.hidden)
 | |
|         lstm_out = lstm_out.view(len(sentence), self.hidden_dim)
 | |
|         lstm_feats = self.hidden2tag(lstm_out)
 | |
|         return lstm_feats
 | |
| 
 | |
|     def _score_sentence(self, feats, tags):
 | |
|         # Gives the score of a provided tag sequence
 | |
|         score = torch.zeros(1)
 | |
|         tags = torch.cat([torch.tensor([self.tag_to_ix[START_TAG]], dtype=torch.long), tags])
 | |
|         for i, feat in enumerate(feats):
 | |
|             score = score + \
 | |
|                 self.transitions[tags[i + 1], tags[i]] + feat[tags[i + 1]]
 | |
|         score = score + self.transitions[self.tag_to_ix[STOP_TAG], tags[-1]]
 | |
|         return score
 | |
| 
 | |
|     def _viterbi_decode(self, feats):
 | |
|         backpointers = []
 | |
| 
 | |
|         # Initialize the viterbi variables in log space
 | |
|         init_vvars = torch.full((1, self.tagset_size), -10000.)
 | |
|         init_vvars[0][self.tag_to_ix[START_TAG]] = 0
 | |
| 
 | |
|         # forward_var at step i holds the viterbi variables for step i-1
 | |
|         forward_var = init_vvars
 | |
|         for feat in feats:
 | |
|             bptrs_t = []  # holds the backpointers for this step
 | |
|             viterbivars_t = []  # holds the viterbi variables for this step
 | |
| 
 | |
|             for next_tag in range(self.tagset_size):
 | |
|                 # next_tag_var[i] holds the viterbi variable for tag i at the
 | |
|                 # previous step, plus the score of transitioning
 | |
|                 # from tag i to next_tag.
 | |
|                 # We don't include the emission scores here because the max
 | |
|                 # does not depend on them (we add them in below)
 | |
|                 next_tag_var = forward_var + self.transitions[next_tag]
 | |
|                 best_tag_id = argmax(next_tag_var)
 | |
|                 bptrs_t.append(best_tag_id)
 | |
|                 viterbivars_t.append(next_tag_var[0][best_tag_id].view(1))
 | |
|             # Now add in the emission scores, and assign forward_var to the set
 | |
|             # of viterbi variables we just computed
 | |
|             forward_var = (torch.cat(viterbivars_t) + feat).view(1, -1)
 | |
|             backpointers.append(bptrs_t)
 | |
| 
 | |
|         # Transition to STOP_TAG
 | |
|         terminal_var = forward_var + self.transitions[self.tag_to_ix[STOP_TAG]]
 | |
|         best_tag_id = argmax(terminal_var)
 | |
|         path_score = terminal_var[0][best_tag_id]
 | |
| 
 | |
|         # Follow the back pointers to decode the best path.
 | |
|         best_path = [best_tag_id]
 | |
|         for bptrs_t in reversed(backpointers):
 | |
|             best_tag_id = bptrs_t[best_tag_id]
 | |
|             best_path.append(best_tag_id)
 | |
|         # Pop off the start tag (we dont want to return that to the caller)
 | |
|         start = best_path.pop()
 | |
|         assert start == self.tag_to_ix[START_TAG]  # Sanity check
 | |
|         best_path.reverse()
 | |
|         return path_score, best_path
 | |
| 
 | |
|     def neg_log_likelihood(self, sentence, tags):
 | |
|         feats = self._get_lstm_features(sentence)
 | |
|         forward_score = self._forward_alg(feats)
 | |
|         gold_score = self._score_sentence(feats, tags)
 | |
|         return forward_score - gold_score
 | |
| 
 | |
|     def forward(self, sentence):  # dont confuse this with _forward_alg above.
 | |
|         # Get the emission scores from the BiLSTM
 | |
|         lstm_feats = self._get_lstm_features(sentence)
 | |
| 
 | |
|         # Find the best path, given the features.
 | |
|         score, tag_seq = self._viterbi_decode(lstm_feats)
 | |
|         return score, tag_seq
 | |
| 
 | |
| START_TAG = "<START>"
 | |
| STOP_TAG = "<STOP>"
 | |
| EMBEDDING_DIM = 5
 | |
| HIDDEN_DIM = 4
 | |
| 
 | |
| # Make up some training data
 | |
| with open('/home/dlindvai/work/text.txt', 'r') as text2:
 | |
| 	with open('/home/dlindvai/work/tags.txt', 'r') as tags2:
 | |
| 		text1 = text2.read().splitlines()
 | |
| 		tags1 = tags2.read().splitlines()
 | |
| 
 | |
| 		for line in text1:
 | |
| 			text = line.replace("['", "").replace("']", "")
 | |
| 		for line in tags1:
 | |
| 			tags = line.replace("['", "").replace("']", "")
 | |
| 
 | |
| training_data = [( text.split() , tags.split() )]
 | |
| #print(training_data)
 | |
| 
 | |
| word_to_ix = {}
 | |
| for sentence, tags in training_data:
 | |
| 	for word in sentence:
 | |
| 		if word not in word_to_ix:
 | |
| 			word_to_ix[word] = len(word_to_ix)
 | |
| 
 | |
| tag_to_ix = {"S": 0, "P": 1, "C": 2, "Q": 3, "N": 4, START_TAG: 5, STOP_TAG: 6}
 | |
| 
 | |
| model = BiLSTM_CRF(len(word_to_ix), tag_to_ix, EMBEDDING_DIM, HIDDEN_DIM)
 | |
| optimizer = optim.SGD(model.parameters(), lr=0.01, weight_decay=1e-4)
 | |
| 
 | |
| 
 | |
| # Check predictions before training
 | |
| with torch.no_grad():
 | |
| 	precheck_sent = prepare_sequence(training_data[0][0], word_to_ix)
 | |
| 	precheck_tags = torch.tensor([tag_to_ix[t] for t in training_data[0][1]], dtype=torch.long)
 | |
| 	#print(model(precheck_sent))
 | |
| 
 | |
| 
 | |
| # Print start time
 | |
| start = datetime.now()
 | |
| start_time = start.strftime("%H:%M:%S")
 | |
| print("Start time = ", start_time)
 | |
| 
 | |
| for epoch in range(50):
 | |
| 	for sentence, tags in training_data:
 | |
| 		# Step 1. Remember that Pytorch accumulates gradients. We need to clear them out before each instance
 | |
| 		model.zero_grad()
 | |
| 
 | |
| 		# Step 2. Get our inputs ready for the network, that is, turn them into Tensors of word indices.
 | |
| 		sentence_in = prepare_sequence(sentence, word_to_ix)
 | |
| 		targets = torch.tensor([tag_to_ix[t] for t in tags], dtype=torch.long)
 | |
| 
 | |
| 		# Step 3. Run our forward pass.
 | |
| 		loss = model.neg_log_likelihood(sentence_in, targets)
 | |
| 
 | |
| 		# Step 4. Compute the loss, gradients, and update the parameters by calling optimizer.step()
 | |
| 		loss.backward()
 | |
| 		optimizer.step()
 | |
| 
 | |
| 
 | |
| # Check predictions after training
 | |
| with torch.no_grad():
 | |
| 	precheck_sent = prepare_sequence(training_data[0][0], word_to_ix)
 | |
| 	#print(model(precheck_sent))
 | |
| 
 | |
| 
 | |
| # Error calculator
 | |
| var = model(precheck_sent)
 | |
| y_true = np.array(targets)
 | |
| y_pred = np.array(var[1])
 | |
| 
 | |
| print(metrics.confusion_matrix(y_true, y_pred))
 | |
| print(metrics.classification_report(y_true, y_pred, digits=3))
 | |
| 
 | |
| # Print finish time
 | |
| finish = datetime.now()
 | |
| finish_time = finish.strftime("%H:%M:%S")
 | |
| print("Finish time = ", finish_time)
 |