From cc8ff64199e0e44bffe8f0ea590fce35e05b7a34 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Patrik=20Pavli=C5=A1in?= Date: Sat, 23 Oct 2021 13:10:39 +0000 Subject: [PATCH] Update 'pages/students/2016/patrik_pavlisin/dp22/README.md' --- pages/students/2016/patrik_pavlisin/dp22/README.md | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/pages/students/2016/patrik_pavlisin/dp22/README.md b/pages/students/2016/patrik_pavlisin/dp22/README.md index 5b99a63bea..3640118843 100644 --- a/pages/students/2016/patrik_pavlisin/dp22/README.md +++ b/pages/students/2016/patrik_pavlisin/dp22/README.md @@ -4,7 +4,7 @@ Rekurentné neurónové siete, najmä long short-term pamäť (LSMT, špeciálny druh RNN, vytvorený na riešenie problémov s miznúcim gradientom) a uzavreté rekurentné neurónové siete, boli pevne zavedené ako najmodernejšie prístupy k problémom sekvenčného modelovania a prenosov, ako je jazykové modelovanie a strojový preklad. Početné snahy odvtedy pokračujú v posúvaní hraníc rekurentných jazykových modelov a architektúr encoder-decoder. Sieťové pamäte typu end-to-end sú založené na RNN (Recurrent Neural Network) mechanizme namiesto opakovania zarovnaného podľa sekvencie a ukázalo sa, že fungujú dobre pri úlohách zodpovedajúcich otázky v jednoduchom jazyku a pri modelovaní jazykov. End-to-end učenie je typ Deep Learningu, v ktorom sú všetky parametre trénované spoločne, a nie krok za krokom. -Transformer je modelovú architektúru, ktorá sa vyhýba opakovaniu a namiesto toho sa úplne spolieha na mechanizmus pozornosti na kreslenie globálnych závislostí medzi vstupom a výstupom. Je to prvý transdukčný model, ktorý sa spolieha úplne na vlastnú pozornosť pri výpočte reprezentácii vstupu a výstupu bez použitia RNN (Recurrent Neural Network) alebo CNN (Convolution Neural Network). Používa sa predovšetkým v oblasti NLP (Natural Language Processing) a CV (Computer Vision). Mechanizmy pozornosti sa stali súčasťou presvedčivého modelovania sekvencií a prenosových modelov v rôznych úlohách, ktoré umožňujú modelovanie závislostí bez ohľadu na ich vzdialenosť vo vstupných alebo výstupných sekvenciách. Takmer vo všetkých prípadoch sa však takéto mechanizmy pozornosti používajú v spojení s rekurentnou sieťou. +Transformer je modelová architektúra, ktorá sa vyhýba opakovaniu a namiesto toho sa úplne spolieha na mechanizmus pozornosti na kreslenie globálnych závislostí medzi vstupom a výstupom. Je to prvý transdukčný model, ktorý sa spolieha úplne na vlastnú pozornosť pri výpočte reprezentácii vstupu a výstupu bez použitia RNN (Recurrent Neural Network) alebo CNN (Convolution Neural Network). Používa sa predovšetkým v oblasti NLP (Natural Language Processing) a CV (Computer Vision). Mechanizmy pozornosti sa stali súčasťou presvedčivého modelovania sekvencií a prenosových modelov v rôznych úlohách, ktoré umožňujú modelovanie závislostí bez ohľadu na ich vzdialenosť vo vstupných alebo výstupných sekvenciách. Takmer vo všetkých prípadoch sa však takéto mechanizmy pozornosti používajú v spojení s rekurentnou sieťou. **Modelová architektúra** @@ -12,7 +12,7 @@ Väčšina konkurenčných prenosových modelov neurónovej sekvencie má štruk **Pozornosť** -Funkciu pozornosti je možné opísať ako mapovanie dotazu a sady párov kľúčov a hodnôt na výstup, kde dotaz, kľúče, hodnoty a výstup sú všetko vektory Výstup sa vypočíta ako vážený súčet hodnôt, pričom hmotnosť priradená každej hodnote sa vypočíta pomocou funkcie kompatibility dotazu so zodpovedajúcim kľúčom. +Funkciu pozornosti je možné opísať ako mapovanie dotazu a sady párov kľúčov a hodnôt na výstup, kde dotaz, kľúče, hodnoty a výstup sú všetko vektory. Výstup sa vypočíta ako vážený súčet hodnôt, pričom hmotnosť priradená každej hodnote sa vypočíta pomocou funkcie kompatibility dotazu so zodpovedajúcim kľúčom.